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A Low-Cost, Intensity-Based Fiber Optic Sensor for
Shape-Sensing in Soft Robots

Vedad Bassari

Abstract—Fiber optic sensing is a promising approach for
shape estimation in soft continuum robots. However, commercial
fiber-optic shape sensors are prohibitively expensive for many
applications in research and development due to their extensive
data acquisition apparatus. Moreover, low-cost solutions that
have been developed in research settings lack the sensing range
of commercial sensors and can only estimate bending radii for
a single curvature. We present a novel fiber optic sensor that
enables multi-curve shape sensing with millimeter-scale accuracy
via an off-the-shelf camera. This paper introduces a sensor
fabrication method based on laser-engraving optical fibers and a
data-processing pipeline for interpreting the sensor output. We
furthermore provide an analytical model to inform engraving
patterns based on the spatial resolution required from the sensor.
Finally, we report empirical findings from a soft, multi-curvature
joystick that highlights the sensor’s unique capabilities.

Index Terms—Modeling, Control, and Learning for Soft
Robots, Soft Sensors and Actuators.

I. INTRODUCTION

Continuum 3D shape sensing is challenging due to the
richness of the spatial information it requires. However, ef-
fective 3D shape sensing is required to take full advantage of
the capabilities of soft continuum robots as it enables both
environmental mapping via movement and feedback control
of the robot’s shape. A typical approach to shape sensing is to
use resistive or capacitive sensors that change their behaviors
under mechanical strain [1]. However, these modes of sensing
have little capacity for sensing 3D, multi-curvature shapes due
to the limited spatial information they can capture.

One approach to shape sensing is to establish a correlation
between the transmission of light through an optical fiber and
the curvature of the fiber [2]. Optical signals generated by
these sensors can be analyzed for their frequency content or
the intensity of the transmitted light. The existing commercial
fiber optic shape sensors are limited by the cost and complexity
of their signal processing apparatus, which is required by the
extensive information they need to process [3]. Several sensors
have been developed in a research setting to overcome this
limitation and enable curvature measurements for soft muscles
[4] and continuum robots [5]. However, these sensors are
limited to sensing a single bending radius to circumvent the
computational cost of their commercial counterparts.

We propose the use of machine learning and dynamical
system modeling tools to address this limitation and develop a
low-cost fiber optic sensor built around an off-the-shelf camera
sensor that is capable of sensing complex continuum features.
To enable the use of these data-processing techniques, we also
introduce a repeatable fabrication process to create sensitive,
predictable intensity-based fiber optic transducers.

II. DESIGN

A. Hardware Design

The proposed sensor consists of a bundle of 1 mm PMMA
optical fibers that are mechanically engraved to become sen-
sitive to bending. By engraving one side of the optical fiber,
these sensors leverage the fact that optical rays converge on
the convex side of a bent fiber. Thus, bending the fiber in one
direction causes the rays to align with the grated zone and
refract from the fiber, reducing the intensity of transmitted
light. In contrast, bending the fiber in the opposite direction
causes the rays to converge on the ungraded zone and reflect
into the fiber, increasing the intensity of transmitted light.

This sensing concept has been successfully implemented
to sense a single bending radius [6] [7]. However, using
the information captured by a bundle of fibers allows shape
sensing for multiple bending radii and the detection of intri-
cate deformation patterns. Moreover, individual fibers can be
engraved in different spatial patterns to enhance the spatial
resolution of the full bundle.

The full sensing system, shown schematically in Figure
1, consists of a fiber bundle that is coupled to an LED on
one side, creating a source for optical transmission, and a
camera sensor (Thorlabs Inc., Newton, New Jersey, United
States) on the other side. The coupling method is intended to
precisely constrain the LED, camera, and bundle together to
ensure that the optical signals are repeatable and predictable
for corresponding mechanical deformations. The information
obtained from the camera sensor is then processed through a
data-processing pipeline to generate predictions of the bundle’s
shape.

B. Software Design

The information obtained from the camera sensor is pro-
cessed by a MATLAB algorithm to make predictions about
the bundle shape. The first step in this process is to extract
fiber intensities from the camera, which is done by a pixel-
based intensity averaging scheme. The user initially selects
the location of the fibers in the camera image manually in this
scheme.

We will present a simple analytical model for the intensity-
bending mapping for this type of sensor in section III. How-
ever, it is difficult to create analytical input-output mappings
for bundles of fibers with non-linear phenomena that com-
plex engraving patterns can introduce. Additionally, analytical
models fail to account for relative movement or twisting of
the fibers and similar hardware-associated noise. As a result,
we use a feed-forward neural network to create a data-driven,
non-linear model of the system’s input-output behavior. This
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Fig. 1: Schematic of the main components in the system.

neural network is trained on data acquired from an overhead
camera that monitors the bundle’s 2D shape in a dedicated
test fixture. The fiber shape is provided to the network as
a set of coordinates, and the network is trained to predict
these coordinates based on the intensity vector extracted from
the camera. A schematic of this data-processing pipeline is
presented in Figure 2. The network used in the subsequent
sections consists of two hidden layers with sigmoid activation
and is trained using the Levenberg–Marquardt algorithm.

III. ANALYTICAL MODELING

The working principle of intensity-based optical fiber curva-
ture sensors was briefly described in section II. More specif-
ically, [8] and [9] show experimentally and computationally
that for small radii of bending, the relationship between
intensity loss and sensor curvature is approximately linear in
sensors with a single engraving. The goal of this section is
to extend and validate this model for fibers with multiple
engravings which, as discussed before, can enable greater
sensing fidelity. While the system presented in this paper relies
on a data-driven input-output model, this analytical model
serves to both validate the working principle and inform the
engraving patterns used in the design of the sensors.

Starting from the single engraving case, a simple linear
relationship is given by

I = h− C · θ (1)
C = Cconvex if θ ≤ 0

C = Cconvex if θ > 0

(2)

where θ is the bending angle at the location of the engraving,
I is the normalized intensity, and h is the baseline intensity
with no bending. Note that Cconvex and Cconcave are linear
empirical (rather than model-based) parameters. These param-
eters are allowed to be different from each other in magnitude
in this model - we hypothesize that |Cconvex| > |Cconcave|
due to the directional sensitivity of the gratings.

A simple extension of this model to the case of a bundle of
fibers with two or more engravings per fiber is then given by
an equivalent vector equation

I⃗ = h⃗− C

n∑
i=1

θ⃗i (3)

C = Cconvex if θ ≤ 0

C = Cconvex if θ > 0

(4)

where n is the number of engravings and θi is the local
bending angle of the engravings. A key outcome of this
model is that a fiber bundle with m engraved fibers can
sense up to m local bending radii, which was used as a
preliminary benchmark in prototyping. Additionally, greater
spatial resolution can be achieved with fewer fibers using
multiple engravings per fiber. This premise holds as long as
the engravings of the different fibers are not identical and can
therefore be used to de-convolve the summation in equation
(4). Importantly, however, the number of engravings on a
single fiber is limited by the fact that h < C

∑n
i=1 θi would

result in a loss of signal. In practice, h >> C
∑n

i=1 θi is
advisable to increase the signal-to-noise ratio, so at most two
engravings were used per fiber in the sensors presented in this
paper.

IV. FABRICATION

Several prototypes were created with various engraving
patterns and different numbers of fibers informed by the
model presented in section III. The final prototype bundle
was fabricated in a length of approximately 32 cm with 16
fibers that were engraved in a step-wise manner, such that
the engravings covered the entire length of the bundle. The
fibers were each engraved once with a 2 cm sensitized zone.
The engravings were created by a 30-watt laser cutter creating
parallel cuts with a 0.025 mm spacing on the fiber at a
speed of 1 m/s and a power of 10 W. The cutting parameters
were determined empirically by measuring fiber sensitivity for
different cutting configurations using a custom test fixture,
with the results shown in Figure 3. The settings yielding the
largest sensitivity were selected for prototyping.

The fibers are held together by a piece of heat-shrink tubing
that is formed around the bundle while the fibers are held in a
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Fig. 2: Schematic of the data-processing pipeline. The true fiber shape is inferred via a secondary overhead camera that monitors
the bundle.

fixture. The ends of the fibers are constrained by laser-cut end-
caps, epoxied, and sanded down to provide a uniform surface
finish at the points of optical coupling. The couplings are
accomplished via custom 3D printed components that admit
a forced mechanical fit to the end-caps on one end and the
LED or camera on the other. The fabricated bundles were then
characterized using the data-processing procedure outlined in
Figure 2. The training used several hundred samples of input-
output data collected from multiple recordings to provide
robustness against signal variability.

A. Soft Joystick Demonstration

To demonstrate the unique multi-bend sensing capability of
the optical fiber, a soft joystick was designed to enable a user
to digitize custom geometric shapes via a computer interface.
Such an interface could be used to control the shape of
continuum robots among other applications. The joystick was
created by casting a hollow cylinder of soft silicone rubber.
The fiber bundle was embedded in the cylinder and fixed at the
two ends. Custom end fittings were then assembled to couple
the joystick to an LED and a portable USB camera which was
connected to a real-time implementation of the data-processing
algorithm. An image of the demonstration setup is shown in
Figure 4.

V. RESULTS

A. Bending Model Validation

The experiments presented in this section aimed to validate
the analytical model presented in section III. To begin, an
individual fiber with a single engraving was subjected to
two experiments that used a photo-resistor to quantify the
transmission intensity through the fiber. The first experiment
varied the bending angle over the engraved section of the
fiber while keeping the insensitive zone straight via fixtures on
an optical table. This experiment was then repeated with the
insensitive zone bent over various angles while the sensitive
zone was held straight. The results, shown in Figure 5(a),
confirm the model by showing that the bending only resulted

in a variation of transmission intensity when applied to the
sensitive zone.

The second set of experiments was performed on a fiber that
was engraved in two locations. These experiments changed the
bending angle of each sensitive zone separately, as highlighted
in Figure 5(b). Note that the bending angle shown in the x-
axis of this plot corresponds to that of the first engraving,
while each plotted line corresponds to a discrete bending
angle of the second engraving. As expected, the transmitted
intensity changes linearly with respect to the bending of the
first engraved region with two distinct slopes corresponding
to the convex and concave bending regimes. A line of best fit
is shown for the reference curve θ = 0. Importantly, bending
the second engraving adds a secondary shift in transmission
intensity which is consistent with the analytical model.

B. Sensor Characterization
The next experiments were performed on the prototype

bundle using the same fixture that was used to train the data-
processing pipeline. Figure 6 shows the estimated sensor shape
as well as the true sensor shape captured by the overhead
camera system for various single and multi-curve geometries.
Note that both the optical intensity and the fiber coordinates
are normalized to simplify the computations. The first plot
shows the performance of the network in predicting the bundle
shapes from a video that was used in training - although the
frames used were divided into separate training and testing
batches. The second plot shows the performance of the same
network from a different video recording; the prediction ac-
curacy is noticeably worse, though the approximations remain
physically grounded. This difference in performance can be
quantified by the mean prediction error of the sensor, which
rose from 0.00132±0.0001 to 0.0184±0.003 (n = 6) between
the two configurations. The latter value corresponds to a mean
positional error of 2.21± 0.4 mm over the length of the fiber.

C. Soft Joystick Demonstration
Figure 7 shows two shapes that were provided to the user

and their corresponding digital twin created through the joy-
stick. The demo highlights the sensor’s ability to approximate
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((a)) Fiber transmission intensity for various engraving periods.

((b)) Fiber transmission intensity for various cutting powers.

Fig. 3: Selected results from laser-engraver parameter selection
experiments.

Fig. 4: Annotated picture of the joystick demonstration. The
data processing pipeline can be executed on a typical personal
computer.

((a)) Fiber transmission intensity for various bending angles of the
insensitive and sensitive regions. Bending the insensitive region creates
no meaningful signal.

((b)) Fiber transmission intensity for various bending angles of the
two sensitive regions. Bending the second sensitive region creates a
secondary signal.

Fig. 5: Selected results from model-validation experiments.

the shape of the joystick in real time. However, the resulting
signals indicate a reduced accuracy in comparison to the
bench-top results presented above despite the sensor being re-
trained after implementation in the joystick.

VI. DISCUSSION

The experimental results highlight several features of the
sensing system in its current configuration. Importantly, the
outcome of Figures 5(a) and 5(b) validates the working
principle of the sensor as represented in the analytical model.
However, it is noteworthy that the model becomes convo-
luted for multi-fiber, multi-engraving bundles. Additionally,
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((a)) Training and test data from the same recording.

((b)) Training and test data from different recordings.

Fig. 6: True bundle shapes and network-predicted shapes for
different geometric configurations of the sensor. The accuracy
is reduced when test data is from a different recording than
the training data.

the analytical model does not capture various sources of error
associated with the physical system, including changes in
optical couplings, sliding and relative mechanical movement
of the fibers, and torsional motion of the fibers. This addi-
tional complexity motivates the use of the adopted data-driven
characterization method. Nonetheless, the model is a valuable
design tool for sensor fabrication.

Furthermore, the discrepancy seen in Figure 6 highlights the
variability of the system’s output signal. Several approaches
are proposed for handling this limitation: a computational
approach is the use of more training samples from different
recordings to enhance the computational model’s robustness.
However, the hardware sources of variability that were dis-
cussed above will need to be addressed using more careful
fabrication and testing techniques to achieve greater sensing

((a)) Shape 1.

((b)) Digital render of shape 1.

((c)) Shape 2.

((d)) Digital render of shape 2.

Fig. 7: The shapes shown to the user and the digital shapes
created by the user via the sensor. The sensor roughly approx-
imates the physical shapes in real time.
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accuracy. These measures will ideally push the positional
error of the sensor from 2.21± 0.4 mm to the sub-millimeter
standards of commercial sensors [10]. Moreover, the testing
presented in this paper was confined to planar, quasi-static
measurements which are yet to be extended to dynamic
scenarios. We note, however, that the positional accuracy of
the sensor is comparable to the simpler intensity-based single-
curvature sensors [5].

Finally, the challenges affecting the outcome of the soft
joystick demonstration highlight the difficulties of embedding
the sensor into a portable, real-time form factor. There are
several potential causes for the limited accuracy of the sensor
in the demonstration. Firstly, to make the joystick portable,
the camera sensor was used without a lens - this resulted
in lower resolution and a limited field of view and can be
addressed with a more careful selection of optical components.
Secondly, the training method was intended for 2D shape
sensing, so undesirable 3D deformations of the joystick were
likely to impact the fidelity of the sensor predictions. Separate
3D training procedures will need to be devised specifically
for different implementations of the sensor. Lastly, embedding
the bundle in the silicone frame resulted in an additional
mechanical constraint which could have further contributed
to undesirable twisting and relative motion of the fibers. This
highlights the need to model contact mechanics to guide the
mechanical integration of the sensor [5].

VII. CONCLUSION

We presented a novel, low-cost fiber optical intensity-
based shape sensor for soft robots along with an analytical
model to inform sensor design. The sensor uses off-the-shelf
electrical equipment, cheap fabrication methods, and a data-
driven characterization method to simplify the data-acquisition
complexity associated with fiber optical shape sensors while
enabling the measurement of complex geometric shapes not
accessible to simpler electro-mechanical sensors. The proto-
types shown in the paper provide a proof of concept for
the working principle of the sensor. With the foundational
concepts demonstrated, the sensor resolution can be improved
using a combination of more rigorous software and hardware
solutions.
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