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1 Problem Statement

The objective of this lab is to examine heat transfer phenomenon using temperature sensors. In specific,

the experiments focus on characterizing convective and conductive cooling/heating using a thermocouple,

a resistance temperature detector (RTD), and a thermistor. The analysis will span the characterization of

both the measurement systems and thermal responses.

The first week of the lab is allocated to calibrating the sensors and modeling their dynamic response

as first-order systems, as well as an exercise regarding conservation of energy. The second week examines

natural and forced convective cooling with air and water using the equipment characterized in week one and

fluid mechanics theory.

2 Method

Before calibrating the temperature sensors, the thermometer needed to be validated in order to give a

precise reference point. This validation would be used to calibrate the sensors later on in the lab. This was

done by dipping the thermometer into an ice bath and boiling water, with e 0◦C and 100◦C respectively.

The thermometer works by having a bulb filled with a substance that expands when the temperature of the

thermometer increases and contracts when the temperature decreases.

After validating the thermometer, the calibration of the temperature sensors to map their outputs to a

temperature was next. Calibration was done by dipping the sensors in varying temperatures of water and

waiting for their steady state response. The temperature of the water is recorded using the thermometer

that was validated earlier. Both the response output and the temperature were recorded, and the data

is presented later in this report (section 4). Three temperature sensors were calibrated: a thermocouple,

an RTD, and thermistor. The thermocouple works by taking two different metals (in this lab, chromium

and aluminium were used) and measuring the voltage gradient it creates when introduced to a temperature

gradient. This change is known as the thermoelectric effect, and it is due to electrons in the metal moving

diffusing from the hot side of the thermocouple to the cold side, creating this voltage difference. This voltage

difference is recorded using a LabVIEW VI, along with the time it took to reach the steady state. The RTD

is similar to the thermocouple, but rather than measuring the voltage change, it measures the change in the

metal’s resistance. As the temperature of the RTD’s metal increases, the resistance increases as well due

to the higher temperature hindering the movement of electrons in the conductor. Finally, the thermistor

is similar to the RTD, but instead of a metal such as platinum, a semiconductor is used to measure the

resistance change as temperature changes. The difference between the outputs of the thermistor and the

RTD is that the thermistor has a negative relationship with temperature: as the temperature increases in

the thermistor, the resistance decreases. This is because of the temperature moving the electrons in the

thermistor’s semiconductor into the more conductive band, thus promoting electron movement and reducing
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the resistance of the metal. Both the RTD and thermistor’s outputs were recorded using two DMMS, one

for each sensor, and the timing of the sensors to get to the steady state were done via a stopwatch.

After calibration, the response times of the sensors were tested. The response time of the sensors was

found by introducing a step response by transferring the sensors from an ice bath to hot water and measuring

the time it takes for the sensor to reach the steady state of 0◦C. This time was used to find the response

time constant of the sensor, which is detailed later (section 5).

Next, the transient heating/cooling of a thermocouple with an aluminium ball mass was experimented

on. The ball mass was first submerged in ice water, and after reaching its steady state in the ice bath, the

ball mass was placed into the hot water bath. The voltage change of this was recorded using the LabVIEW

VI used when calibrating the regular thermocouple. Then, the ball mass was transferred from the hot water

bath back into the ice bath, the voltage change being recorded again.

Finally, the conservation of energy was tested using the ball mass. The thermocouple was submerged in

boiling water until it reached its steady state, then placed into a bath of water with a known volume. The

temperature of the water was recorded using the thermometer before and after the ball mass was introduced.

Week two of this experiment began with retesting the response time of the RTD and thermistor this time

using the DAQ module to take readings instead of a digital multi-meter. Both sensors were placed in boiling

water until they reached steady state and then were immediately transferred to an ice bath to create the

step change in temperature. These readings would then be compared to the original data from week 1 and

discuss any differences in values.

The next part of the experiment consisted of measuring the temperature response of the aluminum sphere

when it is subject to a step change in temperature. The aluminum sphere was first placed in boiling water

and its initial temperature was recorded through its built-in thermocouple. Next, the aluminum sphere was

removed from the boiling water and placed into another bucket containing either air or water at a much lower

temperature than the boiling water to create the step change in temperature. The temperature response of

the sphere was recorded by the built-in thermocouple through the LabVIEW VI to be used in our analysis.

This test procedure was preformed four times with buckets of different mediums: still air, moving air,

still water, and flowing water. For still air, an anemometer was used to monitor the air speed to satisfy the

validation of free convection criteria. To create moving air, an air-blower was used to force air convection

over the aluminum sphere. For still water, a narrower bucket was filled with water in order to minimize the

amount of possible water movement. The bucket of flowing water was created using a wider bucket of water

that will be stirred at a constant rate by timing each stir revolution.

From the data collected, we will be able to calculate the heat transfer coefficient for each of the four

cases studied. We will then compare them to the ranges of known heat transfer coefficients for air and water

in free and forced convection and discuss why our calculated values do or do not fall within these ranges.

Lastly, we will use the calculated heat transfer coefficients and fluid mechanics to estimate the fluid velocity.

3 Calibrations

The three temperature sensors (thermocouple, RTD, thermistor) used in this lab all needed to be cali-

brated. Before proceeding with the calibration of the sensors, the thermometer used for this calibration was

verified using the reference temperatures of boiling water and ice.

The calibration of the sensors was carried out by mixing ice and boiling water to create solutions of a

wide range of temperatures. The true temperature of these solutions was estimated via the thermometer,

with the assumption that the solutions had a uniform temperature. Sensors were placed in each mixture,
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including the boiling water and ice for additional data points, and the steady-state readings from the sensors

were collected. A total of 5 data points were used for calibration to ensure goodness of linear fit. The data

from this exercise (section 4) was subjected to linear analysis (section 5) to estimate the calibration constants

needed to obtain reliable readings from the sensors.

4 Data

4.1 Calibration Data

Using the procedure outlined in section 3, the following data (figure 1) was collected for the three sensors.

We note that the data corresponding to the thermocouple was collected as voltage readings via the DAQ

module, whereas the resistances of the RTD and the thermistor were monitored through a digital multi-meter

(DMM).

(a) Thermocouple (b) RTD

(c) Thermistor

Figure 1: Raw data used for sensor calibration.

The comparison of thermometer readings in ice and boiling water showed that the range of readings
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corresponding to the interval 0 − 100C is 0 − 98C. Subsequently, all data points were scaled in order to

account for this discrepancy in thermometer readings. Lastly, using an additional wire of equal length, the

wire resistance of the RTD was measured to be 0.3Ω.

4.2 Response Time Data

Using the method outlined in section 2, the data collected in order to calculate the response time of the

thermocouple is listed in the graphs below:

(a) Raw Al Thermocouple 1 (b) Raw Al Thermocouple 2 (c) Raw Al Thermocouple 3

(d) Raw Reg Thermocouple 1 (e) Raw Reg Thermocouple 2 (f) Raw Reg Thermocouple 3

Figure 2: Raw graphs of thermocouple experiments

And the data for the response time for the RTD and thermistor are in the following tables:

Trial Time to steady state (s)
Trial 1 37
Trial 2 37
Trial 3 39
Average 37.67

Table 1: RTD steady state time in seconds

Trial Time to steady state (s)
Trial 1 27.5
Trial 2 25.5
Trial 3 26
Average 26.33

Table 2: Thermistor steady state time in seconds
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In week 2 of the experiment, the response time test was repeated for both the RTD and thermistor using

the DAQ module to take readings rather than a digital multi-meter for more accurate results due to its

higher sampling rate. The data collected to calculate the response time are presented below:

(a) Raw RTD Data From DAQ (b) Raw Thermistor Data From DAQ

The resulting response times as well as the uncertainty for the thermocouple, RTD, and thermistor are

detailed in section 5.

4.3 Conservation of Energy Data

Using the method outlined in section 2, temperature data and volume measurements were taken to

allow us to determine the degree of energy conserved through this heat transfer process. The initial and

final temperatures were collected using the voltages from thermocouple sensor for the water bath and the

built-in thermocouple for the aluminum sphere and converting them to temperature using the calibration

factors explained in section 5.1. The volume of water used was measured with a graduated cylinder and the

volume of aluminum was determined by measuring the diameter of the sphere which was 50.67mm. These

temperatures and volumes along with the known densities and specific heats of the water bath and aluminum

sphere were recorded as listed in the table below:

Water Bath Data Aluminum Sphere Data
Initial Temp, Ti [

◦C] 18.54 104.89
Final Temp, Tf [◦C] 24.71 24.60

∆T [◦C] 6.17 80.29
Volume, V [L] 0.5 0.06812

Density, ρ [Kg/L] 1 2.71
Specific Heat, C [J/Kg K] 4184 900

Table 3: Temperature, volume, density, and specific heat of water bath and aluminum sphere.

These values will be used in calculating the heat energy gained and lost by the water bath and aluminum

sphere as detailed in section 5.

4.4 Heat Transfer Coefficient

Using the method for week 2 outlined in section 2, the following data was collected in order to calculate

the heat transfer coefficient of an aluminum sphere with varying cooling methods:
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(a) Raw Still Air (b) Raw Moving Air (c) Raw Still Water (d) Raw Moving Water

Figure 4: Raw graphs of thermocouple convection experiments

The results were collected after exposing the sphere, embedded with a thermocouple, to a step-change

of temperature under the shown convective conditions. We note that the cooling process of still air was

substantially slower than the other processes, so the data collection was stopped earlier in the cooling

process compared to the other data points.

5 Results

5.1 Calibration Results

The linearized form of the governing equations of the three sensor responses is summarized below. We

observe that the semi-log representation of the thermistor resistance is used to give a linear account of this

non-linear sensor.

Thermocouple: T = a1[C] + a2[
C

V
] · V (1)

RTD: T = a1[C] + a2[
C

Ω
] ·R (2)

Thermistor:
1

T
= a1[

1

K
] + a2[

K

ln(Ω)
] · ln(R) (3)

(4)

In order to process the calibration data, the collected data points were formatted according to these

equations and the MATLAB function Polyfit(x,y,n) was used to obtain a linear fit. The corresponding

coefficients along with the 95% interval of confidence (2 standard deviations) are provided in table 4; figure

5 contains a visual representation of this linear fit.

Property Thermocouple RTD Thermistor
a1 −0.764C −279C 0.0026K

a2 2.61 · 104 C
V 2.76C

Ω 0.0003 K
kΩ

Uncertainty 3C 2C 3K
Linearity (r) 0.999 1.00 0.999

Sensitivity 4.28 · 10−5V
C 0.382Ω

C 3.31 · 103 kΩ
K (See Text)

Sensitivity (Percentage) 1.95%V
C 0.314%Ω

C 1.00 · 105 %kΩ
K (See Text)

Table 4: Results from linear regression analysis of the collected data.
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(a) Thermocouple (b) RTD

(c) Thermistor

Figure 5: Processed calibration data with linear fits and 95% intervals of confidence.

Prior to line fitting, three processing adjustments were made to the data. First, the recorded thermocouple

voltages were divided by the amplification factor of 207.7 which was supplied with the amplifying equipment

used in the measurement system. Second, the wire resistance of the RTD was subtracted from the measured

resistance readings. Lastly, the temperatures of the thermistor were converted to the Kelvin scale to avoid

the artifacts of having a 0 reading in the 1
T term.

The treatment of uncertainty, both for linear fits and propagated error, is available in section 6. To eval-

uate the linearity of the resulting fits, we performed linear-regression analysis using the MATLAB function

corrcoef(A,B). The resulting correlation coefficients r are reported in table 4. This number indicates the

strength of the linear relationship between the independent and dependent variables. Similarly, the table

contains sensitivity analysis which was performed according to equations
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Sensitivity: S =
∆Output

∆Input
(5)

Sensitivity (Percentage): S =
%∆Output

∆Input
· (6)

(7)

where the output is sensor voltage or resistance, and input is temperature. In both cases, sensitivity

indicates the ability of a sensor to reflect small changes in the monitored state. When assessing sensitivities,

we must note that the sensitivity reported for the thermistor is fundamentally different than the other

two values, and has units of ( ln(R)
1
T

). On a voltage vs temperature scale, the sensor would have a non-

constant sensitivity, largest at high temperatures and plateauing towards 0 at smaller temperatures. To

demonstrate this, we present figure 6 which highlights two regimes of linear sensitivity for the thermistor

with corresponding sensitivity values of −0.0508kΩ
K and −0.399kΩ

K . sensitivity percentages of −1.87%kΩ
K and

−11.4%kΩ
K , and correlation coefficients 0.997 and 0.999. The implications of these figures are discussed in

section 7.

Figure 6: Processed calibration data showing two linear sensitivity regimes of the thermistor. Bounds of
confidence and error bars are eliminated to avoid redundancy with previous figures.

5.2 Response Time Results

The response times of the thermocouple, RTD, and thermistor can be approximated by the lumped

capacitance model, which assumes that the conductive cooling within the sensors is much more rapid than

convective cooling at their surface. Thus, this model implies that the body has a constant temperature T

which varies according to convection. Using this model, all three sensors demonstrate first order responses.

As such, for the RTD and thermistor, the response of the two sensors can be modeled using the following:

Θ(t) =
T (t)− Tinf

Ti − Tinf
= e−

t
τ (8)

Where Θ is the nondimensionalized temperature difference, T (t), Tinf, Ti, are the current temperature,
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temperature at steady state, and initial temperature respectively, t is the time, and τ is the response time

constant. Due to the exponential term in this model, we can approximate an accurate time constant by

taking 5τ , as it is when the response is 99.3% of the steady state. As such, we can rearrange equation (8)

into:

τRTD and thermistor = − t

5ln(Θ)
(9)

To calculate the response time constants, the average time it took for the sensor to reach the steady state

temperature was used.

For the thermocouple, due to measuring the voltage curve rather than the time it took for the sensor

to get to steady state, a slightly different method was used. First, the voltage difference curve from the

LabVIEW VI was converted from volts to ◦C using the calibration data found earlier. Next, the curve was

nondimensionalized using the nondimensional temperature difference equation from (8), and finally linearized

by taking the natural log of the data. Taking the line of best fit of this linearized data and finding the slope

of said curve gives the time constant for the thermocouple, as:

ln(Θ(t)) = ln(
T (t)− Tinf

Ti − Tinf
) = − t

τthermocouple

Which can be rewritten as:

τthermocouple = − t

ln(Θ(t))
(10)

Meaning that the reciprocal of the slope of the line of best fit for the linearized thermocouple graphs is the

time constant. After processing all of the thermocouple data to find the data set’s time constant, the time

constants were averaged out. This way of finding the time constant was done for the aluminum ball mass

thermocouple as well.

The uncertainties of the response time constants were found using the equations outline later in section

6.2. Thus, the following table presents the resulting response time and uncertainty:

Sensor Response Time τ (s) Uncertainty (s)
Thermocouple (regular) 0.0921 ± 0.5317
Thermocouple (Al ball) 7.7280 ± 0.0167

RTD from DMM 1.9257 ± 0.1537
Thermistor from DMM 1.3463 ± 0.1092

RTD from DAQ 5.7438 ± 0.3543
Thermistor from DAQ 1.0103 ± 0.2187

Table 5: Response time and uncertainty of the sensors

The data for the temperature sensors mentioned in section 3 was cleaned up due to noise, and then formatted

into a semilog plot to linearize it using the method mentioned earlier in the section. The line of best fit was

then found using the MATLAB function fit(), the slope being the time constant, and looks as follows:

5.3 Conservation of Energy Results

The amount of heat energy gained by the water bath and lost by the aluminum sphere can be calculated

using the heat energy equation:
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(a) Thermocouple (Al Ball) (b) Thermocouple (Regular) (c) Thermocouple (Al Ball)

(d) Thermocouple (Regular) (e) Thermocouple (Al Ball) (f) Thermocouple (Regular)

Figure 7: Processed graphs of thermocouple experiments

(a) RTD Data From DAQ (b) Thermistor Data From DAQ

Figure 8: Processed graphs of RTD and Thermistor experiments

∆Q = mC∆T (11)

The masses can be calculated through the equation m = V ρ. Using these equations and the data

presented in section 4.3, the changes in heat energy can be calculated and are shown below:

Water Bath Aluminum Sphere
∆Q [KJ] +12.91 −13.34

Table 6: Amount of heat transfer between water bath and aluminum sphere

From these results we can see that the aluminum sphere lost more heat energy than what was gained

by the water bath which suggests a discrepancy from the ideal conservation of energy. This heat was most

likely lost to the environment but other reasons for this imbalance are discussed further in section 7.3. To

calculate the percent of energy conservation in the system, the amount of heat energy gained by the water

bath is divided by the amount of heat lost by the aluminum sphere. This shows that 96.8% of the energy
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was conserved through this heat transfer process.

5.4 Heat Transfer Coefficient

5.4.1 Finding the Time Constant of the Cooling Process

The raw data from figure 9 was processed using MatLab’s movmean() function in order to smooth the

data out. Then, the voltage axis was nondimentionalized using the following equation:

β =
V (t)− V∞

V0 − V∞
(12)

Where V0 is the initial voltage and V∞ is the steady state voltage, or end voltage. This produces a nondi-

mensional graph that can be linearized using a natural log function, which can then be used to find time

constant τ of the system. This is similar to when the time constants were found in the previous section, as

such the time constant equation looks like:

τ = − t

ln(β)
(13)

Which is the reciprocal of the slope of the line of best fit of the linearized, nondimensionalized graph. We

recall that this results from a lumped capacitance assumption. After fitting a line of best fit using the fit()

MatLab function, the time constants were found and are listed in the following table:

Convection Mode Response Time τ (s) Uncertainty (s)
Still Air 937.21 ± 13.56

Moving Air 201.53 ± 1.18
Still Water 31.54 ± 0.48

Moving Water 9.38 ± 0.26

Table 7: Response time and uncertainty of the sensors

The uncertainty found and listed above is covered in detail in section 6.4.1. The graphs after processing

looks as such:

(a) Still Air (b) Moving Air (c) Still Water (d) Moving Water

Figure 9: Processed graphs of thermocouple convection experiments

5.4.2 Finding the Heat Transfer Coefficient

We recall the standard closed-form solution of transient lumped capacitance heat transfer that arises in

the cooling of the aluminum sphere:

11



5.4 Heat Transfer Coefficient Vedad Bassari, Michael Howo, and Connor Tang

ln(
T − Tinf

Ti − Tinf
) =

−hA

mCp
t (14)

where the term hA
mCp

, composed of the heat transfer coefficient, the convective area, and the mass, is

equivalent to the τ found above. Using this equation, we extract the following coefficients of heat transfer

for the four cooling scenarios:

Convection Mode Heat Transfer Coefficient ( W
m2K )) Uncertainty ( W

m2K ))
Still Air 220 ± 3

Moving Air 1020 ± 6
Still Water 6530 ± 100

Moving Water 21200 ± 610

Table 8: Heat transfer coefficients extracted from step-response of aluminum sphere.

The uncertainty cited in table 8 arise from the propagation of the uncertainties in equation (14), addressed

in section 6.4.1. In explaining the calculations, it should be pointed out that the specific heat capacity and

density of aluminum were treated as constants, with tabulated values corresponding to 100◦C adopted in

calculations (Cp = 9000[ J
kgK ], ρ = 2710[ kgm3 ]).

5.4.3 Estimating the Fluid Velocity

The last step of the analysis for this lab consists of obtaining fluid velocity from the forced convection

data. Once the heat transfer coefficient is known, the following set of equations

Nu =
hD

k
(15)

Nu = 2 + 0.6Re
1
2Pr

1
3

Re =
ρUD

µ

are used to find the Reynolds number and, subsequently, the fluid velocity. The results from this exercise

are presented in table 9. The adopted values of dynamic viscosity for air and water are, respectively,

1.81 · 10−5[ kgms ] and 8.90 · 10−4[ kgms ]. Similarly, the prandtl numbers for air and water were found to be 0.701

and 1.76 at 100◦C. Lastly, the density and thermal conductivity of the fluids were estimated at 1.225[ kgm3 ]

and 31.62[mW
mk ] for air and 997[ kgm3 ] and 677[mW

mk ] for water.

Convection Mode velocity (m
s ) Uncertainty (m

s )
Moving Air 2750 ± 30

Moving Water 90.5 ± 5

Table 9: Fluid velocities extracted from step-response of aluminum sphere under forced convection.

We observe that the velocities are nonphysically large. The heat transfer coefficients are also larger than

the empirically available, which may point to a systematic error in the measurements. This consideration is

further discussed in section 7.
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6 Uncertainty

6.1 Calibration Uncertainty

The uncertainty in the calibration analysis stems from two sources: propagation of uncertainty from

measurement inaccuracies, and uncertainty associated with the imperfect linear fit. The former phenomenon

stems from the instrument limitations:

DAQ Voltages: ∆ = 115ppm · Reading + 406µV (16)

DMM Resistance (RTD): ∆ = 0.8% · Reading + 4 · Resolution (17)

DMM Resistance (Thermistor): ∆ = 0.8% · Reading + 2 · Resolution (18)

These equations are used to generate the error bars in figure 5. When formatting the data for the

thermistor as a semilog plot, we used the following equations:

Propagation of Uncertainty =

√√√√ n∑
i=1

(
δf

δxi
∆xi)2 (19)

∆(ln(x)) =
1

x
·∆x (20)

∆(
1

x
) =

1

x2
·∆x (21)

In order to asses the second source of uncertainty, we used the MATLAB function Polyval(p,x), which

provided the standard deviation for the linear fit p.

From the figures, it is evident that the contribution from both of these sources of error is comparable. In

the table 4, the uncertainty of the curve fit is provided because it captures the variation between the data

points.

6.2 Response Time Uncertainty

The uncertainty of the response time can be calculated using the error propagation equation according

to equation (19). As such, for the RTD and thermistor, there are multiple sources of uncertainty. The first

source is the DMM resistance uncertainty, which was found in the previous section. The second source is

with the response time itself, where the response time can vary away from the true time. This standard

deviation of the mean can be found using the following equation:

∆x̄ =

√√√√ 1

n(n− 1)

n∑
i=1

(xi − x̄)2 (22)

This standard deviation is treated as ∆x̄ when using equation (19). Next, the uncertainty of the dimensionless

temperature difference ∆Θ had to be found. This is found by taking half of the smallest unit of measure on

the thermometer, which comes out to be ∆T = .5◦C. This uncertainty from the thermometer is then plugged

into the dimensionless temperature gradient equation explained in equation (8). With all of the possible

uncertainties taken to account, the error propagation for the RTD and thermistor as can be generally written
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as:

∆τRTD and thermistor =

√
(

∆x̄i

5ln(Θ)
)2 + (

Θ(∆Θ)x̄i

5
)2 (23)

For the thermocouples, two additional sources of uncertainty needs to be taken to account. The first is

the DAQ, again discussed in an earlier section. The second source is from the linear fit when finding the

thermocouple’s line of best fit. The uncertainty from this linear fit model can be expressed with the following:

∆m = s

√
n

n
∑

i x
2
i − (

∑
i xi)2

(24)

∆b = s

√ ∑
i x

2
i

n
∑

i x
2
i − (

∑
i x)

2
(25)

s =

√∑
i y

2
i − 1

n (
∑

i yi)
2 −m(

∑
i xiyi − 1

n

∑
i xi

∑
i yi))

n− 2
(26)

Where ∆m is the slope’s uncertainty, ∆b is the uncertainty of the offset, m is the slope of the linear fit,

and n is the total number of data points used. Since the averages of the time constants were taken using

this linear fit method, the standard deviation of the mean was found as well. These two uncertainties were

combined for an overall uncertainty for the thermocouples. Further propagation is not needed as only the

voltage output of the thermocouples were measured, whereas for the RTD and thermistor, temperature (in

voltage) and time was measured.

6.3 Conservation of Energy Uncertainty

The uncertainty in the conservation of energy calculations is derived through the propagation of uncer-

tainty from inaccuracies in the measurement devices and the thermocouple calibration uncertainty.

The thermocouple calibration uncertainty equation, as shown in equation (16), is used to determine the

uncertainty in the initial and final temperature readings taken by the thermocouple. These uncertainties

are then used with the propagation of uncertainty equation, as shown in equation (19), to calculate the

uncertainty in the change in temperature of each material.

The volume of water used was measured using a graduated cylinder so the uncertainty in this measurement

was half of the smallest measurement mark. The volume of the aluminum sphere was calculated using

the diameter of the sphere measured using calipers. The uncertainty of the calipers is half of its smallest

measurement mark and using the propagation of uncertainty equation, the uncertainty of the sphere’s volume

can then be calculated.

The uncertainty of the mass of water and aluminum used in this experiment is also calculated using the

propagation of uncertainty equation from the volume and known densities of water and aluminum. Since

the density and specific heat of each material are known values and not values we tested for we will assume

there is no uncertainty to their values.

Using the calculated mass and temperature change uncertainties along with the known values of specific

heat, we can then calculate the uncertainty in the amounts of heat transferred between the water bath and

aluminum sphere. Since the amount of heat transferred between the water and sphere is representative of

the degree of conservation of energy, the uncertainty in the amount of heat transferred is representative of

our uncertainty in the degree of conservation of energy. The calculated values of each of these uncertainties
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are listed in the table below.

Water Bath Uncertainties Aluminum Sphere Uncertainties
Initial Temp, Ti [

◦C] 4.24e−4 5.03e−4
Final Temp, Tf [◦C] 4.29e−4 4.29e−4

∆T [◦C] 6.03e−4 6.61e−4
Volume, V [L] 5e−3 8.07e−5
Mass, m [Kg] 5e−3 2.19e−4

∆Q [KJ] 1.29e−1 1.58e−2

Table 10: Temperature and volume uncertainties of water bath and aluminum sphere.

6.4 Heat Transfer Coefficient Uncertainty

6.4.1 Uncertainty in Time Constant

There are two sources of uncertainty in the convection experiment. The first is from the DAQ voltage

reading, which was covered previously in section 6.1. When applying this error into the data, however, it

was found that it was minute compared to the other source of data, so it was omitted for brevity. The more

major source of this error comes from the slope error when taking the line of best fit of the linearized data.

This was covered in section 6.2, and applied when finding the uncertainty from taking the linear slope fit.

6.4.2 Propagation of Uncertainty for Coefficients of Heat Transfer

The bulk of analysis for propagation of uncertainty relies on equation (21). For the heat transfer coeffi-

cient, this expression yields the following set of formula:

∆h =

√
(
Cp

Aτ
· ρ ·∆V )2 + (

mCp

A2τ
·∆A)2 + (

mCp

Aτ2
·∆τ)2 (27)

Where:

∆A = 8πr∆r (28)

∆V = 4πr2∆r (29)

(30)

Recall that the mass was estimated as a multiplication of density by volume. Additionally, we make

the assumption that the uncertainty of the tabulated values (density, specific heat capacity) are far smaller

than experimental uncertainties, so the corresponding terms are discarded from the calculations. Lastly, the

uncertainty of the measured diameter was found as half of the smallest decimal measured by the caliper,

namely 0.005mm.

6.4.3 Propagation of Uncertainty in Calculation of Fluid Velocities

Similar to the above sections, the equation for the propagation of uncertainty for fluid velocities was

found to be the following.
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∆Nu =

√
(
d ·∆h

k
)2 + (

h ·∆d

k
)2 (31)

∆Re =
2Nu−0.2

0.6

Pr
2
3 · 0.6

·∆Nu (32)

∆U =

√
(
µ ·∆Re

ρd
)2 + (

Reµ ·∆d

ρd2
)2 (33)

Note that three stages of error propagation are accounted for: the propagation of uncertainty in finding

Nu from h, and the propagation of uncertainty in finding Re from Nu, and, finally, the propagation of

uncertainty in finding v from Re. As before, the tabulated values of the Prandtl number and the dynamic

viscosities were taken to be free of uncertainty. The MATLAB script used for these calculations is featured

in the appendix.

7 Discussion

7.1 Calibration Linearity and Sensitivity

Before discussing the linearity and sensitivity of the calibration results, we reiterate that it is desirable

to have instrument uncertainties that are orders of magnitude smaller than the uncertainty of the linear fit.

In reporting the uncertainty in section 6, the focus is shifted to the latter source of uncertainty because it

captures the deviation of data points from linear behavior. However, the integrity of the reported data would

be greater if instruments with less uncertainty were used. In the case of the thermistor data, the relative

uncertainty of the DAQ is amplified by the fact that the input signal is minuscule prior to amplification.

Comparing the linearity and sensitivity of the sensors highlights their comparative performance. While

the RTD has the greatest correlation coefficient, all sensors display a largely linear behavior over the measured

temperatures (R > 0.99) - in the case of thermistor, this linear response is an artifact of the logarithmic

formulation. The sensitivity, however, is not uniform: the thermocouple (S = 1.95%) has a larger sensitivity

than the RTD (S = 0.314%). Focusing on the thermistor, the non-constant linear sensitivity implies that

the monitored temperature range informs whether thermistor is adequately sensitive. For instance, if a

measurement is being made at very high temperatures and high sensitivity is desired, the thermistor may

be a good candidate. In contrast, if high-sensitivity measurements across a large range of temperatures

are desired, the thermocouple is a stronger candidate. Lastly, we remark that the linearity and sensitivity

estimates provided for the individual thermistor regimes are subject to greater uncertainty because only a

few data points were available for each set of calculations.

7.2 Response Time Trends

As stated earlier, the focus of the uncertainty is shifted towards experimental uncertainty and not in-

strumental uncertainty. With that aside, comparing the response times of all of the sensors shows that the

fastest response time is with the regular thermocouple. The response time of the regular thermocouple is

almost like a zero order response, where it almost immediately went to the target temperature based on the

raw data. If the response time is the priority in selecting a sensor, then an exposed thermocouple will be

sufficient as it will immediately sense the change in temperature and change its voltage output. However,

regular thermocouple has an incredibly high uncertainty compared to the other sensors, being roughly 5x

larger than the other uncertainties. Thus, the regular thermocouple may be fast responding, but vastly
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less accurate than the rest. If accuracy is needed, then the aluminum ball thermocouple performs the best,

having the lowest uncertainty than the rest. For both accuracy and response time, the thermistor offers a

more balanced performance between the two. It responded to temperature changes faster than the RTD

and aluminum ball thermocouple, and is more accurate than the regular thermocouple and RTD. This is

especially apparent when viewing the response time readings taken by the DAQ module in week 2 of the

experiment. Due to the DAQ module having a higher sampling rate than the digital multi-meter used in

week 1 and because of the large number of data points collected, the thermistor can be seen to have a

response time of less than a quarter of that of the RTD. If response time and accuracy is needed, then the

the thermistor is the best performing sensor for those needs.

7.3 Remarks on Conservation of Energy

The 96.8% energy conservation between the water bath and aluminum sphere does not fully satisfy the

ideal conservation of energy requirements. While inaccuracies in the thermocouples and the overall uncer-

tainties calculated may have played a roll in this discrepancy, this was most likely due to the imperfections

in the test setup causing a small amount of heat energy to get absorbed by the surroundings. Although this

test was preformed in an insulated bucket to improve the amount of heat contained in the system, no system

can be made completely perfect and so some amount of heat energy was bound to be lost.

One other factor considered was the time it takes for heat to propagate through a medium. Since the

sphere’s built-in thermocouple was in the very center of the sphere, it would be much warmer by the end

of the experiment than the average temperature of the sphere. Likewise, since the other thermocouple was

submerged in non-moving water it is unlikely that there would have been an even temperature distribution

throughout the entire bucket. The water closer to the hot sphere would be much warmer than the water

further away from it and it would have taken much longer than the couple minutes this test lasted for for

there to be a completely uniform temperature distribution. Since our heat transfer calculations stems from

our temperature data, this could have further influenced our conservation of energy calculations.

7.4 Heat Transfer Coefficient

The results collected from the aluminum sphere show a wide range of time constants (τ) based on the

mode of convection. It can be seen that cooling the sphere naturally using air as a medium produces the

highest time constant from the rest. This is expected as natural convection is the slowest mode of cooling

an object down. The lowest time constant was with moving water, as it emulates forced convection with

water. Water itself can dissipate heat better than air, and forced convection cools objects down faster too.

As such, a large jump between the time constants of the still air and moving water can be seen.

Comparing the results in table 8 to the commonly accepted ranges of heat transfer coefficients suggests

that the results obtained in this experiment overestimated the heat transfer coefficient of water and air by,

at most, an order of magnitude. This is further reflected in the nonphysically large velocities obtained in

table 9. This discrepancy can be explained by the fact that the aluminum sphere was attached to a rod of

non-negligible surface area. The rod was subject to convection along with the sphere, which resulted in more

rapid cooling than what would be predicted by the model and, subsequently, large heat transfer coefficients.

This conjecture is further supported by the fact that the air velocity was orders of magnitude larger than

water velocity; because the rod section was fully suspended in air but not water, this source of error would

affect the air calculations disparately. In addition, the rod was held by clamps or a user, which added a

conductive path that further skewed the predicted coefficients. These unaccounted modes of heat transfer

act as a source of systematic error in the experiment that could be alleviated in post-processing by modeling
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the heat transfer through the rod.
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8 Appendix A: MATLAB Data Processing Script for Calibrations

%% Data processing for calibration of temperature Sensors

%Last Edit: VB 10/18

%ME105, Vedad Bassari, Michael Howo, Connor Tang

clc; clear; close all;

TC_V = [0.818;0.722;0.536;0.455;0.02]; %Thermocouple voltage radings [V]

TC_V = TC_V./207.7; %Accounting for amplification

TC_T = [98;88;67;58;0]; %Thermocouple temeperature [C]

RTD_R = [137.5;130.2;125.1;121.9;101.3]; %RTD resistance readings [Ohm]

RTD_R = RTD_R - 0.03; %Accounting for wire resistance

RTD_T = [98;78;66;58;0]; %RTD temperature readings [C]

T_R = [1.054;2.074;2.714;3.52;27.1]; %Thermistor resistance readings [Ohm]

T_T = [98;76;66;58;0]; %Thermistor temperature readings [C]

%Plot data for thermocouple

figure();

plot(TC_V,TC_T,’bs’,’MarkerSize’,15,’MarkerFaceColor’,[0 0 1]);

title(’Calibration Data for Thermocouple’);

ylabel(’Solution Temperature (C)’);

xlabel(’Thermocouple Reading (V)’);

%Plot data for RTD

figure();

plot(RTD_R,RTD_T,’bs’,’MarkerSize’,15,’MarkerFaceColor’,[0 0 1]);

title(’Calibration Data for RTD’);

ylabel(’Solution Temperature (C)’);

xlabel(’RTD Reading (Ohm)’);

%Plot data for thermistor

figure();

plot(T_R,T_T,’bs’,’MarkerSize’,15,’MarkerFaceColor’,[0 0 1]);

title(’Calibration Data for Thermistor’);

ylabel(’Solution Temperature (C)’);

xlabel(’Thermistor Reading (kOhm)’);

%Adjustment of thermometer readings

TC_T = TC_T.*(100./98);

RTD_T = RTD_T.*(100./98);

%Eliminate edge cases from the thermistor calibration

T_R = [1.054;2.074;2.714;3.5;27.1]; %Thermistor resistance readings [kOhm]

T_T = [98;76;66;58;0]; %Thermistor temperature readings [C]
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T_T = T_T.*(100./98);

T_T = T_T + 273.15; %Converting to Kelvin

log_T_R = log(T_R); %Arrays formatted for semi-log plotting

log_T_T = 1./(T_T);

%Error Propagation

d_TC_T = zeros(5,1) + 0.5; %Uncertainty of thermometer readings

d_RTD_T = zeros(5,1) + 0.5;

d_T_T = zeros(5,1) + 0.5;

d_T_T = d_T_T.*(1./(T_T.^2));

d_TC_V = ((115./(10.^6)).*TC_V) + (406.*(10.^-6)); %Uncertainty of DAQ

d_RTD_R = ((0.8./100).*RTD_R) + (4.*0.1); %Uncertainty of DMM

d_T_R = ((0.8./100).*T_R) + (2.*0.001);

d_T_R = d_T_R*(1/T_R);

d_T_R = d_T_R(:,4);

%Line fitting

[TC_fit,TC_fit_s] = polyfit(TC_V,TC_T,1); %Obtain linear fit

%Evaluate uncertainty of linear fit

[TC_y_fit,TC_delta] = polyval(TC_fit,TC_V,TC_fit_s);

TC_fit_stdev = mean(TC_delta);

TC_r = corrcoef(TC_V,TC_T); %Linearity: correlation of coefficient

%Sensitivity: absolute and percentage-wise

TC_S = ((TC_V(end-1)-TC_V(1))./(TC_T(end-1)-TC_T(1)));

TC_S_p = (((TC_V(end-1)-TC_V(1))./(TC_V(end-1)).*100)./...

(TC_T(end-1)-TC_T(1)));

%Plot data for thermocouple

figure();

plot(TC_V,TC_T,’bs’,’MarkerSize’,8,’MarkerFaceColor’,[0 0 1]);

title(’Calibration Results for Thermocouple’);

ylabel(’Solution Temperature (C)’);

xlabel(’Thermocouple Reading (V)’);

hold on;

x = linspace(0,0.9./207.7);

TC_line = TC_fit(1).*x + TC_fit(2);

plot(x,TC_line,’--b’,’LineWidth’,0.5)

hold on;

plot(TC_V,TC_y_fit+2*TC_delta,’m--’,TC_V,TC_y_fit-2*TC_delta,’m--’)

legend(’Data Points’,’Linear Regresion’,’95% Confidence of Interval’);

errorbar(TC_V,TC_T,-d_TC_T./2,d_TC_T./2,-d_TC_V./2,d_TC_V./2,’bs’,...

’CapSize’,20,’HandleVisibility’,’off’)

xlim([0 0.9./207.7]);
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%Line fitting

[RTD_fit,RTD_fit_s] = polyfit(RTD_R,RTD_T,1); %Obtain linear fit

%Evaluate uncertainty of linear fit

[RTD_y_fit,RTD_delta] = polyval(RTD_fit,RTD_R,RTD_fit_s);

RTD_fit_stdev = mean(RTD_delta);

RTD_r = corrcoef(RTD_R,RTD_T); %Linearity: correlation of coefficient

%Sensitivity: absolute and percentage-wise

RTD_S = ((RTD_R(end-1)-RTD_R(1))./(RTD_T(end-1)-RTD_T(1)));

RTD_S_p = (((RTD_R(end-1)-RTD_R(1))./(RTD_R(end-1)).*100)./...

(RTD_T(end-1)-RTD_T(1)));

%Plot data for RTD

figure();

plot(RTD_R,RTD_T,’bs’,’MarkerSize’,8,’MarkerFaceColor’,[0 0 1]);

title(’Calibration Results for RTD’);

ylabel(’Solution Temperature (C)’);

xlabel(’RTD Reading (Ohm)’);

hold on;

x = linspace(100,140);

RTD_line = RTD_fit(1).*x + RTD_fit(2);

plot(x,RTD_line,’--b’,’LineWidth’,0.5)

hold on;

plot(RTD_R,RTD_y_fit+2*RTD_delta,’m--’,RTD_R,RTD_y_fit-2*RTD_delta,’m--’);

legend(’Data Points’,’Linear Regresion’,’95% Confidence of Interval’);

errorbar(RTD_R,RTD_T,-d_RTD_T./2,d_RTD_T./2,-d_RTD_R./2,d_RTD_R./2,’bs’,...

’CapSize’,20,’HandleVisibility’,’off’)

xlim([100 140]);

%Line fitting

[T_fit,T_fit_s] = polyfit(log_T_R,log_T_T,1); %Obtain linear fit

%Evaluate uncertainty of linear fit

[T_y_fit,T_delta] = polyval(T_fit,log_T_R,T_fit_s);

T_fit_stdev = mean(T_delta);

T_r = corrcoef(log_T_R,log_T_T); %Linearity: correlation of coefficient

%Sensitivity: absolute and percentage-wise

T_S = ((log_T_R(end)-log_T_R(1))./(log_T_T(end)-log_T_T(1)));

T_S_p = (((log_T_R(end)-log_T_R(1))./(log_T_R(end)).*100)./...

(log_T_T(end)-log_T_T(1)));

%Plot data for thermistor

figure();

plot(log_T_R,log_T_T,’bs’,’MarkerSize’,8,’MarkerFaceColor’,[0 0 1]);
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title(’Calibration Results for Thermistor’);

ylabel(’Inverse of Solution Temperature (1/K)’);

xlabel(’Semi-log Thermisotr Reading (ln(kOhm))’);

hold on;

x = linspace(0.05,3.30);

T_line = T_fit(1).*x + T_fit(2);

plot(x,T_line,’--b’,’LineWidth’,0.5)

hold on;

plot(log_T_R,T_y_fit+2*T_delta,’m--’,log_T_R,T_y_fit-2*T_delta,’m--’)

legend(’Data Points’,’Linear Regresion’,’95% Confidence of Interval’);

errorbar(log_T_R,log_T_T,-d_T_T./2,d_T_T./2,-d_T_R./2,d_T_R./2,’bs’,...

’CapSize’,20,’HandleVisibility’,’off’)

xlim([0.05 3.30]);

%Line fitting

[T_fit_A,T_fit_s_A] = polyfit(T_R(1:3),T_T(1:3),1); %Obtain linear fit

[T_fit_B,T_fit_s_B] = polyfit(T_R(4:5),T_T(4:5),1); %Obtain linear fit

%Evaluate uncertainty of linear fit

[T_y_fit_A,T_delta_A] = polyval(T_fit_A,T_R(1:3),T_fit_s_A);

[T_y_fit_B,T_delta_B] = polyval(T_fit_B,T_R(4:5),T_fit_s_B);

T_fit_A_stdev = mean(T_delta_A);

T_fit_B_stdev = mean(T_delta_B);

T_r_A = corrcoef(T_R(1:3),T_T(1:3)); %Linearity: correlation of coefficient

T_r_B = corrcoef(T_R(4:5),T_T(4:5)); %Linearity: correlation of coefficient

%Sensitivity: absolute and percentage-wise

T_S_A = ((T_R(3)-T_R(1))./(T_T(3)-T_T(1)));

T_S_B = ((T_R(5)-T_R(4))./(T_T(5)-T_T(4)));

T_S_A_p = (((T_R(3)-T_R(1))./(T_R(3)).*100)./...

(T_T(3)-T_T(1)));

T_S_B_p = (((T_R(5)-T_R(4))./(T_R(4)).*100)./...

(T_T(5)-T_T(4)));

%Plot data for thermistor

figure();

plot(T_R,T_T,’bs’,’MarkerSize’,15,’MarkerFaceColor’,[0 0 1]);

title(’Calibration Results for Thermistor’);

ylabel(’Solution Temperature (K)’);

xlabel(’Thermistor Reading (kOhm)’);

hold on;

xA = linspace(0,3);

T_line_A = T_fit_A(1).*xA + T_fit_A(2);

plot(xA,T_line_A,’--b’,’LineWidth’,0.5)

hold on;
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xB = linspace(3,30);

T_line_B = T_fit_B(1).*xB + T_fit_B(2);

plot(xB,T_line_B,’--r’,’LineWidth’,0.5)

legend(’Data Points’,’Linear Regime 1’,’Linear Regresion Regime 2’);

xlim([0 30]);
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9 Appendix B: MATLAB Data Processing Script for Response Time Analysis

clc; clearvars;

%% thermocouple uncertainty stuff

SR_response = [.1153;.1103;.1626];

TC_response = [11.52;11.25;9.807];

SR_error = [.0002; .0003; .0006];

SR_mean_error = [0; 0; 0];

n = 3;

mean_SR_Response = mean(SR_response);

mean_TC_Response = mean(TC_response);

SD_SR = sqrt(1/(n*(n-1))*sum((SR_response-mean_SR_Response).^2));

SD_TC = sqrt(1/(n*(n-1))*sum((TC_response-mean_TC_Response).^2));

for i = 1:n

SR_mean_error(i) = SR_error(i)/SR_response(i);

end

uncert_SR = sqrt(sum(SR_mean_error.^2)/n + (SD_SR/mean_SR_Response)^2);

%% RTD and thermistor stuff

% temperatures measured in degrees Celsius

T_0 = 0;

T_f = 98; %final temperature and temperature at steady state

RTD_response = [37;37;39];

therm_response = [27.5;25.5;26];

n = length(RTD_response);

% assuming that the response time is at 5*tau, where they were at steady

% state, the following equation is used: Omega(t) = e^(-t/5tau)

mean_RTD_Response = mean(RTD_response);

mean_therm_Response = mean(therm_response);

SD_RTD = sqrt(1/(n*(n-1))*sum((RTD_response-mean_RTD_Response).^2));

SD_therm = sqrt(1/(n*(n-1))*sum((therm_response-mean_therm_Response).^2));

nonDimTemp = (98-100)/(0-100);

nonDimTemp_uncertainty = (.5-100)/(0-100);
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tau_RTD = -(mean_RTD_Response/(5*log(nonDimTemp)));

tau_therm = -(mean_therm_Response/(5*log(nonDimTemp)));

tau_RTD_uncert = sqrt((SD_RTD/(5*log(nonDimTemp)))^2 +...

(nonDimTemp*nonDimTemp_uncertainty*mean_RTD_Response/5)^2);

tau_therm_uncert = sqrt((SD_therm/(5*log(nonDimTemp)))^2 +...

(nonDimTemp*nonDimTemp_uncertainty*mean_therm_Response/5)^2);

%% thermocouples

clc; clearvars;

TC_data = readmatrix("SR5.txt");

TC_data2 = readmatrix("TR4.txt");

TC_SR = TC_data(:,2);

TC_TC = TC_data2(:,3);

a1 = -.764;

a2 = 2.61*10^4;

amp_factor_SR = 216.4;

amp_factor_TC = 207.7;

%{

figure(); hold on;

plot(TC_SR, "blueo");

title("Raw Al Ball Thermocouple Data");

xlabel("Sample #");

ylabel("Voltage (V)");

hold off;

figure(); hold on;

plot(TC_TC, "blueo");

title("Raw Regular Thermocouple Data");

xlabel("Sample #");

ylabel("Voltage (V)");

hold off;

%}

TC_SR_temp = a1 + a2.*(TC_SR./amp_factor_SR);

TC_TC_temp = a1 + a2.*(TC_TC./amp_factor_TC);

TC_length = length(TC_TC_temp);

i = 0;

j = 0;

while i < length(TC_SR_temp)
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i = i+1;

if(TC_SR_temp(i) < 0)

TC_SR_temp(i) = 0.000001;

elseif(TC_SR_temp(i)>100)

TC_SR_temp(i) = 99.999999;

end

end

while j < TC_length

j = j+1;

if(TC_TC_temp(j) < 0)

TC_TC_temp(j) = 0.000001;

end

if(TC_TC_temp(j) > 100)

TC_TC_temp(j) = 99.999999;

end

%{

if(j > 180)

TC_TC_temp(j) = [];

TC_length = TC_length - 1;

j = j-1;

end

%}

end

TC_SR_nondim = (TC_SR_temp-100)/(0-100);

TC_TC_nondim = (TC_TC_temp-100)/(0-100);

TC_SR_lin = log(TC_SR_nondim);

TC_TC_lin = log(TC_TC_nondim);

TC_SR_time = [1:1:length(TC_SR_lin)]’./10;

TC_TC_time = [1:1:length(TC_TC_lin)]’./10;

TC_SR_data = [TC_SR_time TC_SR_lin];

TC_TC_data = [TC_TC_time TC_TC_lin];

TC_SR_range = [50:1:500]’;

TC_SR_fit = fit(TC_SR_data(TC_SR_range, 1), TC_SR_data(TC_SR_range, 2), ’poly1’);

TC_TC_range = [13:1:24]’;

TC_TC_fit = fit(TC_TC_data(TC_TC_range, 1), TC_TC_data(TC_TC_range, 2), ’poly1’);

SRdataPoint = 200;

SR_V = TC_SR(SRdataPoint);
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pre_d_SR_V = (a1 + a2.*((((115./(10.^6)).*SR_V) + (406.*(10.^-6)))./amp_factor_SR));

d_SR_V = 1/((pre_d_SR_V-100)/(0-100));

TCdataPoint = 13;

TC_V = TC_TC(TCdataPoint);

pre_d_TC_V = (a1 + a2.*((((115./(10.^6)).*TC_V) + (406.*(10.^-6)))./amp_factor_TC));

d_TC_V = 1/((pre_d_TC_V-100)/(0-100));

f1 = figure(); hold on;

plot(TC_SR_data(:,1), TC_SR_data(:,2), ’blue o’);

plot(TC_SR_fit, ’red’);

errorbar(SRdataPoint/10,TC_SR_data(SRdataPoint,2),-d_SR_V./2,d_SR_V./2,’bs’,...

’CapSize’,20,’HandleVisibility’,’off’)

title("Thermocouple (Al Ball Mass) Transient Response");

xlabel("Time (s)");

ylabel("ln(Theta)");

legend("Thermocouple Data","y = -0.1626x + 0.8623");

hold off;

f2 = figure(); hold on;

plot(TC_TC_data(:,1), TC_TC_data(:,2), ’blue o’);

plot(TC_TC_fit, ’red’);

axis([0 11 -20 1]);

errorbar(TCdataPoint/10,TC_TC_data(TCdataPoint,2),-d_TC_V./2,d_TC_V./2,’bs’,...

’CapSize’,20,’HandleVisibility’,’off’)

title("Thermocouple (Regular) Transient Response");

xlabel("Time (s)");

ylabel("ln(Theta)");

legend("Thermocouple Data","y = -9.807x + 13.39");

hold off;

27



Vedad Bassari, Michael Howo, and Connor Tang

10 Appendix C: MATLAB Data Processing Script for Heat Transfer Coefficient and
Fluid Velocity Estimation

%% Estimate fluid velocity from transient forced convection data

%Last edit by VB, 10/23

clear; clc; close all;

tau = [937.21; 201.52; 31.54; 9.38]; %Time constants (s)

dtau = [13.56; 1.18; 0.48; 0.26]; %Uncertainty of time constants (s)

d = (50.67)./1000; %Diameter of sphere [m]

r = d./2; %Radius of sphere [m]

rho = 2710; %Density of aluminum [kg/m^3]

rho1 = 1.225; %Density of air [kg/m^3]

rho2 = 997; %Density of water [kg/m^3]

k1 = 31.62./1000; %Thermal conductivity of air [W/mK]

k2 = 0.677; %Thermal conductivity of water [W/mK]

dd = 0.000005; %Uncertainty of diameter [m]

dr = dd./2; %Uncertainty of radius [m]

V = (4./3).*pi.*(r.^3); %Volume of sphere [m^3]

dV = 4.*pi.*(r.^2).*dr; %Uncertainty of volume [m^3]

m = rho.*V; %Sphere mass [kg]

dm = rho.*dV; %Uncertainty of mass [kg]

A = 4.*pi.*(r.^2); %Sphere surface area [m^2]

dA = 8.*pi.*r.*dr; %Uncertainty of surface area [m^2]

cp = 9000; %Specific heat [J/kg K]

h = (m.*cp)./(A.*tau); %Heat transfer coefficient [W/m^2k]

%Uncertainty of Heat transfer coefficient [W/m^2k]

dh = sqrt( (((cp)./(A.*tau)).*dm).^2 + (((m.*cp)./((A.^2).*tau)).*dA)...

.^2 + (((m.*cp)./(A.*(tau.^2))).*dtau).^2 );

Nu1 = (h.*d)./(k1); %Nusselt number and uncertainty

dNu1 = sqrt( ((d.*dh)./(k1)).^2 + ((h.*dd)./(k1)).^2 );

Nu2 = (h.*d)./(k2); %Nusselt number and uncertainty

dNu2 = sqrt( ((d.*dh)./(k2)).^2 + ((h.*dd)./(k2)).^2 );

mu1 = 1.81.*(10.^-5); %Air fluid properties

pr1 = 0.701;

mu2 = 8.90.*(10.^-4); %Water fluid properties

pr2 = 1.76;

%Reynolds number and uncertainty

Re1 = ((Nu1(2,1)-2)./0.6).^2./(pr1.^(2./3));

dRe1 = dNu1(2,1).*(1./0.6).*(1./(pr1.^(2/3))).*2.*((Nu1(2,1)-2)./0.6);

u1 = (Re1.*mu1)./(rho1.*d); %Velocity of air [m/s]

du1 = sqrt( ( (mu1.*dRe1)./(rho1.*d) ).^2 + ...

( (Re1.*mu1.*dd)./(rho1.*(d.^2)) ).^2 );

Re2 = ((Nu2(4,1)-2)./0.6).^2./(pr2.^(2./3));
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dRe2 = dNu2(4,1).*(1./0.6).*(1./(pr2.^(2/3))).*2.*((Nu2(4,1)-2)./0.6);

u2 = (Re2.*mu2)./(rho2.*d); %Velocity of water [m/s]

du2 = sqrt( ( (mu2.*dRe2)./(rho2.*d) ).^2 + ...

( (Re2.*mu2.*dd)./(rho2.*(d.^2) )).^2 );
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