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1 Introduction

The inverted pendulum is a common case study in control system design due to its unstable dynamics.

This project analyzes an extension of this system, the dual inverted pendulum (Figure 1). The system of

interest consists of a cart with mass M = 1 kg that moves along a single axis under the action of the input

force f(t). Two bars of masses m1 = m2 = 0.2 kg and lengths l1 = 0.5 m, l2 = 1 m are attached to the cart

via hinges.

Figure 1: Free-body diagram of the dual pendulum system, adopted from [1].

The goal of the controller design is to stabilize these bars around their unstable vertical equilibrium.

Desirable qualitative properties of the controlled system include a short response time (t < 20s), disturbance

rejection with respect to low-frequency disturbances (f1, f2 < 50 N), and small control inputs (f < 500 N).

Note that these design constraints are not specified by the problem statement, but imposed to roughly

guide our design process. The following sections provide an analysis of the system’s controllability and an

optimal controller design that uses full-state feedback. Finally, we provide a theoretical overview of the

system’s closed-loop properties and design an observer-based optimal controller that accommodates realistic

measurement constraints. All of the subsequent analysis is based on the linearized plant model presented by

[1]:
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Figure 2: Linearized model of the dual pendulum system, adopted from [1].

which takes the standard linear form ẋ = Ax+Bu, y = Cx+Du with the state vector x = [z ż θ1 θ̇1 θ2 θ̇2]
′

as visualized in Figure 1.

2 Controller Design

2.1 Controllability Analysis

We begin our analysis by evaluating the controllability of the system defined by the model in Figure 2.

The controllability matrix for the system is formulated as κ = [B | AB | A2B | A3B | A4B | A5B], which is

performed in MATLAB (section 5). It is shown that the controllability matrix is full rank [2] and the system

is controllable with the parameters provided in section 1.

To better understand the controllability of the system, we examine the rank of the controllability matrix

while sweeping the length of the second pendulum l2 with a constant mass density. The rank of the con-

trollability matrix is examined by plotting the ratio of its smallest and largest singular values - a ratio of

singular values close to 0 indicates a singular, and therefore non-full rank, controllability matrix (Figure 3).
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Figure 3: Ratio of the singular values of the controllability matrix for various pendulum lengths. Note that
the system is not controllable for the case l1 = l2.

Note that the system becomes uncontrollable when l2 = l1, in this case l2 = 0.5 m. This behavior is

expected intuitively since the controller would not be able to leverage any asymmetry in the dynamics to

compensate for the under-actuated configuration of the system. This study highlights an important design

consideration, namely that the pendulum moments of inertia need to be unequal (and preferably substantially

different) to make the system easily controllable with the current actuation scheme. We note that even if l2

is slightly different than l1, the controllability matrix has a nearly-zero singular value, resulting in a larger

control effort required for regulation. In this exercise, this issue is avoided by choosing l2 = 1 m

2.2 Optimal Controller Design with Full-State Feedback

We next design a full-state feedback Linear Quadratic Regulator (LQR) to achieve the control goals

outlined above. The optimization criteria fulfilled by the controller is minimizing the following cost function:

JLQR =

∫ ∞

0

||z(t)||2 + ρ||u(t)||2 dt (1)

where z(t) is the output vector that is regulated by the controller, u(t) is the control input, and ρ is

a weighing parameter that allows us to balance the relative value of control effort and regulation efficacy.

Optimal regulation according to equation (1) is achieved via proportional action of a matrix K on the full

state, as shown in Figure 4 [2].

The first decision in the controller design is the content of the output vector z(t). We choose this vector

to be of the form

z = Gx+Hu = [z1 γż1 θ1 γθ̇1 θ2 γθ̇2]
T (2)
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Figure 4: Block diagram of the control system, adopted from [3].

where γ is a design parameter. This choice of G and H satisfies the Kalman inequality [3] since H = 0,

which in turn limits overshoot by providing a guarantee on the system’s phase margin. Moreover, a condition

for the stability of the LQR controller is detectability of the plant from the output, which is trivially fulfilled

by this choice of z.

We next turn our attention to the remaining design parameters γ and ρ. As mentioned above, ρ provides

a trade-off between regulation and control costs. This implies that the value of ρ should be selected to

provide sufficient response time and disturbance rejection while limiting the control input magnitude to

what a physical system could readily provide. The choice of γ provides a rough trade-off between maximum

overshoot and response time.

To implement this controller, the MATLAB function lqr(sys,Q,R,N) is used to solve the Algebraic-

Riccati associated with the optimization problem and return the proportional feedback gain K. In order

to recover the LQR formulation shown in equation (1), the lqr arguments are selected as Q = G′G, R =

H ′H + ρI, and N = G′H. The values of the design parameters are then heuristically varied and the

closed-loop performance (corresponding to the plant A−BK) is evaluated against two benchmark cases:

• The initial deviation of the pendulum bars is 10 degrees in opposite directions.

• Initial bar deviations are both zero, but the cart is subjected to an impulsive disturbance force of

magnitude 30N and duration of 0.01 s.

Both test cases are simulated in MATLAB. The first, unforced benchmark case is simulated using the

MATLAB function [y,tOut,x] = initial(sys,xinit) which provides the system’s unforced time-domain

evolution from given initial conditions. The second case is simulated using the function [y,tOut,x] =

lsim(sys,u,t,xinit), which provides the system’s forced time-domain evolution with the input sequence

(u,t). Note that in this case, the input term Bu only contains the disturbance, since the control input is

already represented in the closed-loop plant.
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(a) ρ = 0.01

(b) ρ = 1

(c) ρ = 100

Figure 5: System response to adversarial initial conditions for various values of ρ.
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(a) ρ = 0.01

(b) ρ = 1

(c) ρ = 100

Figure 6: System response to transient disturbance for various values of ρ.

Figures 5 and 6 show the closed-loop system response to both benchmark tests for various values of the
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design parameter ρ with γ fixed to a value of 1. Parametric studies like this were used to determine the design

parameters that would result in satisfactory controller performance. Two specific trends can be observed

from these selected studies: firstly, increasing the value of ρ prioritizes a small control cost over aggressive

regulation. As a result, a controller with a larger value of ρ will result in a smaller control effort and less

overshoot but admit a larger response time and poor disturbance rejection as evident in Figure 6. Using

the nomenclature of frequency-domain controller design, the effect of ρ is therefore equivalent to scaling the

open-loop Bode magnitude plot.

In this design task, a small value of ρ is advantageous since it improves response time and disturbance

rejection. However, the resulting control signals must be small enough to be easily recreated in hardware.

To verify this physical constraint, consider the maximum control effort required for the case ρ = 0.01,

which is umax = 300 N. A survey of commercial off-the-shelf DC motors (Polulu Corporation, Las Vegas,

Nevada, USA) suggests that an output torque of τ = 4.5 Nm can be readily extracted. For a rack-and-pinion

design, the pinion diameter required to exert the required tangential force equals d = 2·τ
umax

= 3cm. Given

the dimensions of the pendulum, this appears to be a reasonable first-order design. Similarly, a survey of

medium-duty linear actuators suggests this is a manageable loading condition. However, to reduce hardware

cost and provide a larger factor of safety while staying within the rough design goals established in section

1 we choose ρ = 0.1 for the final controller design.

A similar procedure was repeated to choose the second design parameter as γ = 2.5. The performance of

the final controller with respect to both benchmark tests is shown in Figure 7. This discussion is qualitative

due to the open-ended constraints on the system, but the procedure outlined above highlights how the

controller and actuator can be changed to either provide improved closed-loop performance or reduce cost

and complexity.

We note a final concern with the simulated system response: there is an appreciable angular overshoot in

the first benchmark case due to the aggressive control action. In hardware implementation, this can cause

the system to exit the linearized dynamics regime which, in turn, invalidates the controller analysis above.

Additional hardware fine-tuning of ρ and γ may be needed to address this failure mode.
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(a) System response to adversarial initial conditions.

(b) System response to transient disturbance.

Figure 7: Closed-loop performance of the final system in both benchmark tests.

2.3 Optimal Control Analysis

In addition to providing the optimal feedback gain K, the lqr() routine also returns the solution to the

Algebraic Riccati Equation, P. The following relationship is true for the LQR performance objective:

minu(

∫ ∞

0

xTQx+ uTRudt ) = xT
0 Px0 (3)

where x0 is the initial condition. The implication of equation (3) is that the lqr() routine also returns

some information about the control effort required for different initial conditions. Moreover, the Rayleigh-

Ritz inequality shows that the normalized cost functional J(x) = xTPx
xT x

attains its maximum and minimum

values when x is chosen to be the eigenvector corresponding to the largest and smallest eigenvalues of P

respectively.

Using the eig(A) routine in MATLAB, we can find a list of all of the eigenvalues and eigenvectors

associated with P . The discussion above highlights that the eigenvectors corresponding to the largest and

smallest eigenvalues are directional vectors in state space that correspond to the initial conditions which
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are the hardest and easiest to regulate. For the final controller implemented in section 2.2, the following

eigenvalue-vector pairs are found for P:

λmin = 0.4079 (4)

vλmin = [−0.0259 0.3772 0.0938 − 0.8311 0.0536 − 0.3933]T

λmax = 1.0885e04

vλmax
= [0.0079 0.0287 − 0.5169 − 0.1330 0.7927 0.2929]T

(5)

Figure 8 shows the system response for the two extreme initial conditions. We note that the most difficult

initial condition to regulate is similar to the first benchmark test in 2.2, namely when the two bars point in

opposite directions and therefore require different control inputs for stabilization. Moreover, the bars have

adversarial angular velocities tending to pull them further apart. An inspection of the system’s evolution

shows that the controller first stabilizes the shorter pendulum, which can be understood by noting the larger

natural frequency, and therefore the faster dynamics, of the short bar.

In contrast, the easiest initial condition to regulate is the case of the bars pointing in the same direction

and having angular velocities with an opposite sense to this perturbed position. The cart position and

velocity similarly aid the stabilization of the bars with a single control action, i.e. by returning the cart to

the origin. The controller forces in this case are 2 orders of magnitude smaller than the adversarial case

discussed above and applied over a shorter interval, highlighting the vast difference in the effort required for

regulation. This discrepancy shows the importance of analyzing the required control effort for specific initial

conditions that the designer may expect to regulate frequently in the physical system.
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(a) System response to desirable initial conditions.

(b) System response to adversarial initial conditions.

Figure 8: Closed-loop performance of the final system for initial conditions corresponding to the eigenvectors
of the P matrix. Note the relative magnitudes of the control input for the two cases.

3 Observer Design

3.1 Observability Analysis

We next consider the case in which the system’s states are not all measured, which is a common oc-

currence with angular and linear encoders. Specifically, we check the rank of the observability matrix

(o = [C | AC | A2C | A3C | A4C | A5C]′) for the following outputs using MATLAB:

• Available measurements are cart displacement, θ1, and θ2.

• Available measurements are cart displacement and θ1 only.

• Available measurements are cart displacement and θ2 only.

• Available measurements are cart displacement and θ1 − θ2.

The observability matrices for all cases are found to be full-rank. This outcome may be initially surprising

for the cases in which only one angle is measured; however, the dynamics of z, θ1, and θ2 all depend on
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Figure 9: Block diagram of the observer-based control system, adopted from [3].

each other, meaning that knowing two of the variables provides enough information to extrapolate the third

variable along with its derivative.

3.2 Optimal Observer-Based Controller Design

Finally, we design an observer-based controller for the system using z, θ1, and θ2 as the available mea-

surements. Instead of assuming the full state of the system to be available via measurements, the controller

designed in this section uses a dynamic estimation of the full state provided by an observer based on the

available measurements. As seen in Figure 9, this observer is a linear estimator based on the correction

matrix L:

˙̂x = Ax̂+Bu+ L(ŷ − y) (6)

where x̂ and ŷ are estimated values of the state and the output respectively. A common optimal approach

to designing L is to choose a matrix that minimizes the expected value of estimation error for zero-mean

Gaussian noise processes (known as the Linear-Quadratic-Gaussian (LQG) problem). The optimal matrix L

is found using the MATLAB function [est,L,P] = kalman(sys,Q,R,N), where Q, R, and N are weighing

matrices that represent the relative magnitude of various process noises.

To maintain the system response achieved with LQR design, it is desirable to select the smallest values of

weighing matrices that approximate the expected noise levels. More specifically, we choose the form Q = I,

R = σI where σ is a design parameter that represents the relative value of measurement noise. A small value

of σ implies small measurement noises relative to the observer uncertainty and, in turn, fast L dynamics

which recovers the response seen from the full-state controller.

In this case, we start with an estimated σ = 0.01 corresponding to the angular resolution of the encoder

associated with the motor specified in section 2.2. The full system can be formulated as a 12-dimensional,

unforced state-space model which contains the states of the physical system x as well as the estimated states

x̂, represented below in matrix partition notation:

[
ẋ
˙̂x

]
=

[
A −BK

LC A− LC −BK

][
x

x̂

]
(7)

y =
[
C 0

] [x
x̂

]

11



3.2 Optimal Observer-Based Controller Design Bassari, Man

Note that the partitioned state matrix captures the full system dynamics including the control action;

however, any disturbance would still propagate through the system using the B matrix of the model in

Figure 2.

Figures 11 and 12 show the system response to the two benchmark cases for various values of σ around this

initial estimate. As expected, smaller values of σ result in a system response that more closely approximates

the full-state feedback response - in this case, we select σ = 0.01. In practice, larger values of σ enhance the

high-frequency response of the closed-loop system [3], so a larger σ may be chosen if the design is intended

to fulfill specific high-frequency performance metrics.

Inspecting the eigenvalues of the observer plant (A− LC) shows the presence of a slow oscillatory mode

close to the imaginary axis. From the eigenvalue separation principle, it is known that the set of eigenvalues

of the full system is equal to the union of the sets of eigenvalues of the controller and observer plants.

Subsequently, this slow mode will be present in the full system and justifies the increased response time and

overshoot of Figure 11 relative to Figure 5. The poles and zeros of the full-state feedback controller and

observer-based controller (Figure 10) reflect this difference.

(a) Full-state feedback controller. (b) Observer-based controller.

Figure 10: The poles and zeros of the full-state feedback controller and observer-based controller displayed
using the rlocus() routine in MATLAB.
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(a) σ = 0.001

(b) σ = 0.1

(c) σ = 10

Figure 11: System response to adversarial initial conditions for various values of σ.

13



3.2 Optimal Observer-Based Controller Design Bassari, Man

(a) σ = 0.001

(b) σ = 0.1

(c) σ = 10

Figure 12: System response to transient disturbance for various values of σ.
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3.3 Controller Input-Output Transfer Function

One feature of interest for the control system shown in Figure 9 is the input-output transfer function of

the observer-based controller which is the Laplace-domain map between the output y and the control input

u. To obtain the transfer function, we start with the state-space model of the controller:

[
˙̂x
]
=

[
A− LC −BK

] [
x̂
]
+
[
L
]
y

u =
[
−K

] [
x̂
]

note that this model is contained in the full-system model. Once the state-space model is obtained, the

individual transfer functions between the controller inputs (z, θ1, and θ2) and outputs (u) can be computed

using the MATLAB routine [b,a] = ss2tf(A,B,C,D). Because the controller is a multiple-input single-

output system, the function needs to be called separately for each input variable.

(a) U
Z

(b) U
Θ1

(c) U
Θ2

Figure 13: Input-output transfer functions.

Figure 13 shows the relevant transfer functions - it is separately verified that the transfer functions have

negative-real poles. Moreover, all transfer functions are in 6th order and strictly proper as expected.

4 Conclusion

In summary, we first presented a full-state feedback LQR controller design for the inverted double-

pendulum along with corresponding controllability and control effort analysis. We then used this development

to create an observer-based LQR/LQG controller for the system under realistic measurement constraints.

In addition to the hardware fine-tuning required to implement these controllers, future development of this

design can include a robustness analysis of the controller with respect to plant and input uncertainty.
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5 Appendix 1: MATLAB Script

%ME243A, Final Project - Vedad Bassari

clear; clc; close all;

%% System Definition

M = 1; %Cart mass [kg]

m1 = 0.2; %Bar mass [kg]

m2 = m1;

l1 = 0.5; %Bar length [m]

l2 = 1;

g = 9.81; %Acceleration of gravity [m/s^2]

%Compund variables

M1 = 2*m1*l1;

M2 = 2*m2*l2;

Z = 4*M + M1 + M2;

%% Controllability Analysis

%Define variables that need to be swept

l2Sweep = linspace(0.25,1,100);

m2Sweep = linspace(0.05,0.2,100);

M2Sweep = 2.*m2Sweep.*l2Sweep;

ZSweep = 4*M + M1 + M2Sweep;

sRatio = zeros(1,length(l2Sweep)); %Allocate storage for singular values

for i = 1:length(l2Sweep) %Sweep through different values of l2 and m2

%State matrix

A = [ 0 , 1, 0, 0, 0, 0; ...

0, 0, (-3*M1*g)/ZSweep(i), 0, (-3*M2Sweep(i)*g)/ZSweep(i), 0; ...

0, 0, 0, 1, 0, 0; ...

0, 0, (3*g*(ZSweep(i)+(3*M1)))/(4*ZSweep(i)*l1), 0, ...

(9*M2Sweep(i)*g)/(4*ZSweep(i)*l1), 0; ...

0, 0, 0, 0, 0, 1; ...

0, 0, (9*M1*g)/(4*ZSweep(i)*l2Sweep(i)), 0, ...

(3*g*(ZSweep(i)+(3*M2Sweep(i))))/(4*ZSweep(i)*l2Sweep(i)), 0 ];

B = [ 0; 4/ZSweep(i); 0; -3/(ZSweep(i)*l1);...

0; -3/(ZSweep(i)*l2Sweep(i))]; %Input matrix

%Formulate the controllability matrix

A1 = A*B;
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A2 = (A^2)*B;

A3 = (A^3)*B;

A4 = (A^4)*B;

A5 = (A^5)*B;

K = [B A1 A2 A3 A4 A5];

s = svd(K);

sRatio(i) = min(s)/max(s);

end

r = rank(K); %Check that controllability matrix is full rank for l2 = 1 m.

FS = 16;

figure(1);

plot(l2Sweep,sRatio,’r’,’LineWidth’,1); %Position

ylabel(’$\frac{\sigma_{min}}{\sigma_{max}}$ (a.u)’,’Interpreter’,...

’latex’,’FontSize’,FS);

xlabel(’$l_2$ (m)’,’Interpreter’,’latex’,’FontSize’,FS);

title(’Normalized Singular Values for Various pendulum Lengths’,...

’FontSize’,FS);

grid on;

%% Controller Design

%State matrix

A = [ 0 , 1, 0, 0, 0, 0; ...

0, 0, (-3*M1*g)/Z, 0, (-3*M2*g)/Z, 0; ...

0, 0, 0, 1, 0, 0; ...

0, 0, (3*g*(Z+(3*M1)))/(4*Z*l1), 0, ...

(9*M2*g)/(4*Z*l1), 0; ...

0, 0, 0, 0, 0, 1; ...

0, 0, (9*M1*g)/(4*Z*l2), 0, ...

(3*g*(Z+(3*M2)))/(4*Z*l2), 0 ];

B = [ 0; 4/Z; 0; -3/(Z*l1);...

0; -3/(Z*l2)]; %Input matrix

C = [1, 1, 1, 1, 1, 1]; %Output matrix for full-state feedback

D = 0; %Feedforward matrix

%Formulate state-space model

sys = ss(A, B, C, D);
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%LQR parameters

rho = 0.1;

gamma = 2.5;

%Output matrices for LQR controller

G = [1, 0, 0, 0, 0, 0;...

0, gamma, 0, 0, 0, 0;...

0, 0, 1, 0, 0, 0;...

0, 0, 0, gamma, 0, 0;...

0, 0, 0, 0, 1, 0;...

0, 0, 0, 0, 0, gamma];

H = [0; 0; 0; 0; 0; 0];

%LQR arguments

Q = G’*G;

R = H’*H + rho;

N = G’*H;

%Call LQR function

[K,S,P] = lqr(sys,Q,R,N);

C = K;

%Formulate the closed-loop system

ACL = A - B*K; %Closed-loop plant model

sysCL = ss(ACL, B, C, D); %Closed-loop state-space model

%Simulate time evolution for benchmark #1

[y1,tOut1,x1] = initial(sysCL,[0,0,deg2rad(10),0,deg2rad(-10),0],10);

%Simulate time evolution for benchmark #2

t = 0:0.01:10;

u = zeros(1,length(t));

u(1) = 30; %Define initial disturbance [N]

[y2,tOut2,x2] = lsim(sysCL,u,t,[0,0,0,0,0,0]);

x1(:,3:6) = rad2deg(x1(:,3:6)); %Convert angles to degrees

x2(:,3:6) = rad2deg(x2(:,3:6)); %Convert angles to degrees

%Plot simulation results

figure(2);

labels = {’Cart Position [m]’; ’Angle [deg]’; ’Control Input [N]’};

plotyyy(tOut1,x1(:,1),tOut1,x1(:,3),tOut1,y1,labels);
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hold on;

plot(tOut1,x1(:,5),’k’,’LineWidth’,1);

title(’Time-Domain Evolution from Adversarial Initial Conditions’,...

’FontSize’,FS);

xlabel(’t (s)’,’Interpreter’,’latex’,’FontSize’,FS);

legend(’Angle 1 [deg]’,’Angle 2 [deg]’,’FontSize’,FS,’location’,...

’southeast’);

grid on;

figure(3);

labels = {’Cart Position [m]’; ’Angle [deg]’; ’Control Input [N]’};

plotyyy(tOut2,x2(:,1),tOut2,x2(:,3),tOut2,y2,labels);

hold on;

plot(tOut2,x2(:,5),’k’,’LineWidth’,1);

title(’Time-Domain Evolution with Initial Disturbance’,...

’FontSize’,FS);

xlabel(’t (s)’,’Interpreter’,’latex’,’FontSize’,FS);

legend(’Angle 1 [deg]’,’Angle 2 [deg]’,’FontSize’,FS,’location’,...

’northeast’);

grid on;

%% Control Effort Study

[vP, dP] = eig(S);

%Simulate time evolution for the best IC

[yB,tOutB,xB] = initial(sysCL,vP(:,1),4);

%Simulate time evolution for the worst IC

[yW,tOutW,xW] = initial(sysCL,vP(:,end),10);

%Plot simulation results

figure(3);

labels = {’Cart Position [m]’; ’Angle [deg]’; ’Control Input [N]’};

plotyyy(tOutB,xB(:,1),tOutB,xB(:,3),tOutB,yB,labels);

hold on;

plot(tOutB,xB(:,5),’k’,’LineWidth’,1);

title(’Time-Domain Evolution from Desirable Initial Conditions’,...

’FontSize’,FS);

xlabel(’t (s)’,’Interpreter’,’latex’,’FontSize’,FS);

legend(’Angle 1 [deg]’,’Angle 2 [deg]’,’FontSize’,FS,’location’,...

’northeast’);

grid on;
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figure(4);

labels = {’Cart Position [m]’; ’Angle [deg]’; ’Control Input [N]’};

plotyyy(tOutW,xW(:,1),tOutW,xW(:,3),tOutW,yW,labels);

hold on;

plot(tOutW,xW(:,5),’k’,’LineWidth’,1);

title(’Time-Domain Evolution from Adversarial Initial Conditions’,...

’FontSize’,FS);

xlabel(’t (s)’,’Interpreter’,’latex’,’FontSize’,FS);

legend(’Angle 1 [deg]’,’Angle 2 [deg]’,’FontSize’,FS,’location’,...

’northeast’);

grid on;

%% Observability Analysis

%Case 1: z, theta1, theta2 are measured

%Form observability matrix

C1 = [1, 0, 0, 0, 0, 0;...

0, 0, 1, 0, 0, 0;...

0, 0, 0, 0, 1, 0;];

O1 = [C1; C1*A; C1*A^2; C1*A^3; C1*A^4; C1*A^5;];

rankO1 = rank(O1); %Show that observability matrix is full rank

%Case 2: z, theta1 are measured

%Form observability matrix

C2 = [1, 0, 0, 0, 0, 0;...

0, 0, 1, 0, 0, 0;];

O2 = [C2; C2*A; C2*A^2; C2*A^3; C2*A^4; C2*A^5;];

rankO2 = rank(O2); %Show that observability matrix is not full rank

%Case 3: z, theta2 are measured

%Form observability matrix

C3 = [1, 0, 0, 0, 0, 0;...

0, 0, 0, 0, 1, 0;];

O3 = [C3; C3*A; C3*A^2; C3*A^3; C3*A^4; C3*A^5;];

rankO3 = rank(O3); %Show that observability matrix is full rank

%Case 4: z, theta1 - theta2 are measured

%Form observability matrix

C4 = [1, 0, 0, 0, 0, 0;...

0, 0, 1, 0, -1, 0;];

O4 = [C4; C4*A; C4*A^2; C4*A^3; C4*A^4; C4*A^5;];

rankO4 = rank(O4); %Show that observability matrix is full rank
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%% Observer-Based Controller Design

%LQG parameters

sigma = 0.001;

%Output matrices for LQG observer

C = [1, 0, 0, 0, 0, 0;...

0,0,0,0,0,0;...

0, 0, 1, 0, 0, 0;...

0,0,0,0,0,0;...

0, 0, 0, 0, 1, 0;...

0,0,0,0,0,0;];

BB = B;

sysLQG = ss(A, [B BB], C, 0);

Q = sigma.*1; %Single input

R = sigma.*eye(3); %Three outputs

N = 0; %Assume noises uncorrelated

%Call LQG function

[est,L,P] = kalman(sysLQG,eye(),sigma.*eye());

%Formulate closed-loop system

ACLObserver = [A, -B*K; L*C, A - L*C - B*K;];

BCLObserver = [B; B;]; %Account for disturbances using B

CCLObserver = [0,0,0,0,0,0,K]; %Reutrn control input

DCLObserver = 0;

sysCLObserver = ss(ACLObserver,BCLObserver,CCLObserver,DCLObserver);

%Simulate time evolution for benchmark #1

[y1,tOut1,x1] = initial(sysCLObserver,[0,0,deg2rad(10),0,...

deg2rad(-10),0,0,0,0,0,0,0],10);

%Simulate time evolution for benchmark #2

t = 0:0.01:10;

u = zeros(1,length(t));

u(1) = 30; %Define initial disturbance [N]

[y2,tOut2,x2] = lsim(sysCLObserver,u,t,[0,0,0,0,0,0,0,0,0,0,0,0]);

x1(:,3:6) = rad2deg(x1(:,3:6)); %Convert angles to degrees

x2(:,3:6) = rad2deg(x2(:,3:6)); %Convert angles to degrees

%Plot simulation results

figure(5);

labels = {’Cart Position [m]’; ’Angle [deg]’; ’Control Input [N]’};

plotyyy(tOut1,x1(:,1),tOut1,x1(:,3),tOut1,y1,labels);
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hold on;

plot(tOut1,x1(:,5),’k’,’LineWidth’,1);

title(’Time-Domain Evolution from Adversarial Initial Conditions’,...

’FontSize’,FS);

xlabel(’t (s)’,’Interpreter’,’latex’,’FontSize’,FS);

legend(’Angle 1 [deg]’,’Angle 2 [deg]’,’FontSize’,FS,’location’,...

’southeast’);

grid on;

figure(6);

labels = {’Cart Position [m]’; ’Angle [deg]’; ’Control Input [N]’};

plotyyy(tOut2,x2(:,1),tOut2,x2(:,3),tOut2,y2,labels);

hold on;

plot(tOut2,x2(:,5),’k’,’LineWidth’,1);

title(’Time-Domain Evolution with Initial Disturbance’,...

’FontSize’,FS);

xlabel(’t (s)’,’Interpreter’,’latex’,’FontSize’,FS);

legend(’Angle 1 [deg]’,’Angle 2 [deg]’,’FontSize’,FS,’location’,...

’northeast’);

grid on;

%Compute transfer function of the controller

C = [1, 0, 0, 0, 0, 0;...

0,0,0,0,0,0;...

0, 0, 1, 0, 0, 0;...

0,0,0,0,0,0;...

0, 0, 0, 0, 1, 0;...

0,0,0,0,0,0;];

Actrl = A - L*C - B*K;

Bctrl = L;

Cctrl = -K;

Dctrl = zeros(1,6);

[b1,a1] = ss2tf(Actrl,Bctrl,Cctrl,Dctrl,1);

[b2,a2] = ss2tf(Actrl,Bctrl,Cctrl,Dctrl,2);

[b3,a3] = ss2tf(Actrl,Bctrl,Cctrl,Dctrl,3);

%Formulate transfer functions

zToU = tf(b1,a1);

theta1ToU = tf(b2,a2);

theta2ToU = tf(b3,a3);

%Verify transfer function poles

pZToU = pole(zToU);
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pTheta1ToU = pole(theta1ToU);

pTheta2ToU = pole(theta2ToU); %All poles are negative-real

%Verify transfer function zeros

sZToU = zero(zToU);

sTheta1ToU = zero(theta1ToU);

sTheta2ToU = zero(theta2ToU); %All poles are negative-real

%Plot the root-locus of both controllers

figure(7);

rlocus(sysCL); %Full-state feedback

figure(8);

rlocus(sysCLObserver); %Observer-based
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