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1 Introduction

Apical extension robots, colloquially known as vine robots, are a novel class of soft robots

[1]. Vine robots are constructed from a thin-walled tube of flexible material inverted into

itself, creating an outer body and a length of internal (inverted) material (Figure 1). When

the body is pressurized, this internal material is pulled to the tip where it everts and causes

the vine robot to grow (lengthen). To retract (shorten) the vine robot, inversion at the tip

is achieved by pulling internal material away from the tip towards the base of the robot.

Figure 1: A pressurized vine robot grows as internal material (gray) is pulled to the tip.

These two modes of operation, namely growth and retraction, are the available tools for

controlling the robot’s position. A common scheme for positional control of vine robots is

to grow roughly to the desired point in space before reducing pressure to the point that

allows tail (internal material) tension to prevent further growth of the robot. However, this

strategy is ineffective in large-body vine robots because the rate of pressure modulation and

the accuracy of pressure sensing are severely limited by fluid losses and fan performance.

These factors render precise control of pressure impractical and therefore limit the viability

of finding an exact equilibrium position in either growth or retraction regimes. Instead,
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approximate control of position can be achieved by repeatedly toggling between growth and

retraction about the desired position. This ability is particularly desirable for industrial

inspection robots, since the users are often interested in precise examination of a specific

point of the asset being monitored. An alternative proposal is to use brakes to prevent

movement, but electrical brakes commonly used in similar applications suffer from thermal

limitations when engaged for extended periods of time. The objective of this discussion is

to formalize the proposed control strategy by treating apical extension robots as a hybrid

dynamical system.

2 Methods

Hybrid dynamics is a framework for modeling dynamical systems that have both continuous-

time and discrete-time behavior [2]. Systems with explicit logical modes - in this case the

growth and retraction of the vine robot - are commonly treated as hybrid systems. The

following sections formulate a hybrid model of the vine robot and attempt to make asser-

tions about the stability of the desired position under the proposed controller. Additionally,

simulation studies are presented to examine the robustness of the controller. We focus our

attention on the special case of controlling a robot’s linear position in a straight path, but

the presented model can be extended to any path and robot configuration without loss of

generality.

2.1 Hybrid System Formulation

Hybrid systems are represented as

H = (C,F,D,G) (1)

where C is the flow set, F is the flow map, D is the jump set, and G is the jump map [2].

Because hybrid systems display both continuous and discrete time behavior, it is necessary

to split the state space into a flow-set C in which the state ”flows” continuously according

to a flow-map F and a jump-set D in which the state ”jumps” discretely according to a

jump-map G. The data-set (C,F,D,G) encapsulates the dynamics of the system.

To establish a hybrid model of the vine robot, let us first define the state vector:

x :=

zp
q


where z ∈ [0, zmax] is the linear position of the vine robot limited to one-dimension for

simplicity, with zmax being the fully extended length of the robot. p ∈ [0, pmax] is the internal
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pressure of the robot where pmax is dictated by the fan capacity. Lastly, q ∈ {1, 2} is the

logic variable corresponding to the operating mode such that mode 1 indicates growth and

mode 2 indicates retraction.

Next, we need to divide the state-space between the flow-set and the jump-set. We first

Consider the desired attractor for the system: let us define this based on a reference position

zgoal,

A := [zgoal − δ, zgoal + δ]× [0, pmax]× {1, 2}. (2)

Note that the attractor, as currently defined, allows for any pressure or mode as long as

the position is within the desired band. This is due to the fact that a specific equilibrium

pressure is not required for the toggling-controller. In fact, vine robots frequently have vastly

different growth and retraction pressures; this will be evident when the growth and retraction

dynamics are introduced. Moreover, δ is arbitrarily defined as the positional tolerance that

is desired for a given task.

With the attractor defined, it is possible to outline the control scheme introduced above

in more detail: If the robot is at a position smaller than the goal (z < zgoal + δ), the growth

mode is engaged. Growth continues until the robot grows past z = zgoal + δ, at which point

the mode is changed to retraction in order to stay within the attractor. This operating

principle can be mathematically represented as the flow and jump sets for mode 1:

C1 := [0, zgoal + δ] (3)

D1 := [zgoal + δ, zmax].

In a similar manner, the flow and jump sets of the second mode are defined in a way

that allows for retraction if the position is greater than the goal (z > zgoal − δ) but toggles

a switch to growth otherwise:

C2 := [zgoal − δ, zmax] (4)

D2 := [0, zgoal − δ].

Finally, the full jump and flow sets can be constructed from the union of the sets for each

mode. Figure 2 provides a visual overview of the flow and jump sets, with all sets being
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Figure 2: Visual representation of the jump and flow sets in both modes.

closed.

C := ([0, zgoal + δ]× {1}) ∪ ([zgoal − δ, zmax]× {2}) (5)

D := ([zgoal + δ, zmax]× {1}) ∪ ([0, zgoal − δ]× {2})

The flow maps of the constructed system are based on existing analytical models for the

growth and retraction of a vine robot [3] [4].

vgrowth =

[
1

2
p− µwz

A
− Y −

∑
i

C

A
e

µLi
Ri

]n

ϕ (6)

vretraction = −

[
−1

2
p− µwz

A
− Y −

∑
i

C

A
e

µLi
Ri +

T

A

]n

ϕ

In this expression, A is the cross-sectional area of the robot, w is the weight per-length

of the robot body, µ is the coefficient of friction, Y is the force associated with robot defor-

mation, T is the tail tension, and Li, Ri correspond to the radii and lengths of the turns in
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the robot’s path. Lastly, n and ϕ are empirical velocity-dependent values, and n has been

shown to take a value between 1 and 1.5. It is evident that these expressions result from

simple force balances arising from pressure and various sources of friction.

For the case study at hand, the expressions in (7) can be simplified to obtain the flow

maps in both modes.

F1 :=

(max{0, 1
2
p− kz − c})n

kp|zgoal − z|
0

 (7)

F2 :=

−(max{0, 1
2
p− kz − c+ T})n

−kp|zgoal − z|
0

 (8)

Note that the flow of z is set up in such a way to account for the adversarial nature of

the friction forces (i.e friction forces in growth cannot be larger than the driving force). The

pressure is set to flow proportional to the error in position, and the mode does not change

during periods of flow.

The jump maps are more straight-forward to construct, since the jump dynamics do not

alter pressure or position and only serve to toggle the mode. We can summarize the system

data in the following format.

C := ([0, zgoal + δ]× {1}) ∪ ([zgoal − δ, zmax]× {2}) (9)

F := Fq

D := ([zgoal + δ, zmax]× {1}) ∪ ([0, zgoal − δ]× {2})

G :=

 z

p

3− q



2.2 Stability Analysis

To examine the stability of the attractor under the control action, candidate Lyapunov

functions for each mode are examined.

1. We start by considering the growth mode, with the attractor in growth defined as

A1 = {zgoal + δ} × {2(k(zgoal + δ) + c)} (10)
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Note that the z value of the attractor is the endpoint of the flow map for the growth

mode and the pressure value of the attractor is defined to set the z-derivative equal to

zero at this position.

• Start with a candidate V = (p1−p)+(zgoal+δ−z), where p1 = 2(k(zgoal+δ)+c).

• The function is selected to yield a derivative proportional to the distance from

the attractor set:

< ∇V, F1 > = −kp|zgoal − z| − (
1

2
p− kz − c)n (11)

−kp|zgoal − z| − (
1

2
p− kz − c)n ≤ −ρ(

√
(p1 − p)2 + (zgoal + δ − z)2)

with ρ a continuous, positive definite function. Since p1−p ≤ pmax and zgoal+δ−
z ≤ zmax, a function of the form ρ = rs with a real constant r(pmax, zmax) can be

found for the system to fulfill (12) while the system is in the flow set of the first

mode. This is made possible by the appearance of the same terms (neglecting

the small magnitude of δ on both sides of the inequality. Note that the second

term of the Lie derivative is positive semi-definite and does not adversely affect

the flow behavior.

• Next we consider the boundedness requirement of the Lyapunov function.

α1(
√
(p1 − p)2 + (zgoal + δ − z)2) ≤ (p1 − p) + (zgoal + δ − z) (12)

≤ α2(
√

(p1 − p)2 + (zgoal + δ − z)2)

where α1, α2 are κ∞ functions [5]. Again, by construction of the Lyapunov func-

tion, a simple function of the form α = rs fulfills both the lower-bound and the

upper bound. This is possible because the Lyapunov function is positive-definite

and zero only when x is in the attractor, allowing the bounding functions to

remain zero-at-zero.

• Lastly, because the jump map does not affect p or z we can show V (g) = V (x)

for all x in the jump set. This completes the Lyapunov prove for the global

asymptotic stability of A1 in the growth mode.
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2. For the retraction mode, consider the modified attractor set:

A2 = {zgoal − δ} × {k(zgoal − δ) + c+
1

2
p} (13)

• Following the same procedure as mode 1, define a candidate V = (p− p2) + (z −
zgoal + δ), where p2 = k(zgoal − δ) + c+ 1

2
p.

• Consider the Lie derivative of the Lyapunov function.

< ∇V, F2 >= −kp|zgoal − z| − (
1

2
p− kz − c+ T )n (14)

−kp|zgoal − z| − (
1

2
p− kz − c+ T )n ≤ −ρ(

√
(p2 − p)2 + (zgoal − δ − z)2).

It is evident, following an identical reasoning as above, that the flow is well-

behaved according to Lyapunov conditions. This is once again caused by the fact

that the term kp|zgoal − z| appears directly on the left-hand side of the inequality

by the choice of control law.

• We note that the modification of the signs of the terms allows for the following

inequality:

α1(
√

(p2 − p)2 + (zgoal − δ − z)2) ≤ (p− p2) + (z − zgoal + δ) (15)

≤ α2(
√

(p2 − p)2 + (zgoal − δ − z)2).

Once again, the Lyapunov function is constructed to be positive-definite and zero

when the state is in the attractor. Because the terms appearing an all sides of

the inequalities are identical, it is trivial to show the existence of class-kappa

bounding functions.

• Finally, V (g) = V (x) concludes the Lyapunov stability of the attractor A2 under

the retraction regime.

3. We have shown the global asymptotic stability of A1 in growth and A2 in retraction.

Next, note that A1 ⊂ D1 and A2 ⊂ D2. This implies that any period of flow is followed

by a mode switch, with the state oscillating between the two mode-specific attractors.
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Since A1 and A2 are on the interior of A, the full-system attractor A is rendered

globally asymptotically stable.

4. Because the system data satisfy the hybrid basic conditions (in simplistic terms closed

sets and continuous maps), we can further argue that the global asymptotic stability

implies uniformly global asymptotic stability (UGAS).

5. The well-posedness granted by the hybrid basic conditions additionally guarantees

semi-global practical asymptotic stability of the system under small perturbations to

the data. This robustness is a particularly desirable outcome, since variable pressure

losses are virtually guaranteed to act as small pressure-perturbations for vine robots.

2.3 Simulation Studies

Simulations studies were carried out in MATLAB using the hybrid equation toolbox [6]

to corroborate the stability analysis presented above. Three case studies were conducted to

examine stability and robustness:

1. Simulation of the trajectory for the regular system as defined by (10) for 200 contin-

uous time seconds starting at z = 0. This simulation serves to broadly validate the

consistency of the system’s behavior with our analytical predictions.

2. Simulation of the system with sinusoidal perturbations to the pressure, resulting in the

following flow maps:

F1 :=

(max{0, 1
2
p+ ρsin(t)− kz − c})n

kp|zgoal − z|
0



F2 :=

−(max{0,−1
2
p− ρsin(t)− kz − c+ T})n

−kp|zgoal − z|
0


The objective of this study is to specifically examine the robustness properties predicted

by well-posedness.

3. Simulation of the system with an on-off pressure controller replacing the proportional

control law.
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F1 :=

(max{0, 1
2
p− kz − c})n

ṗmax

0



F2 :=

−(max{0,−1
2
p− kz − c+ T})n

−ṗmax

0


Where ṗmax is the maximum rate of change supported by the fan. This simulation is

more pragmatic in nature, motivated by the fact that many fans are not capable of

operating with an analog input.

Table 1 enumerates the constants used in the simulation studies.

k ( N
m3 ) c ( N

m2 ) L (m) zgoal (m) δ (m) n pmax (kPa) pmin (kPa) kp ṗmax (kPa)
0.1 0.1 100 50 1 1.1 20 0 1.0 1.0

Table 1: Default parameters used in simulation studies.

3 Results

Figure 3 shows the simulation results from the basic setup with the tail tension varied be-

tween 15-25N. The lower-bound on the tail tension is imposed by the fact that the retraction

motors are selected to have sufficient torque to retract a fully unspooled robot. This means

that the motor torque is greater than the minimum torque required for retraction when the

robot is not fully unspooled. Similarly, figure 5 displays a similar parametric sweep using the

on-off pressure controller instead of the proportional controller. Lastly, figure 4 is produced

by varying the magnitude of pressure perturbation ρ. The implications of these results are

discussed next.
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Figure 3: Predicted vine robot trajectories for 200 seconds under proportional pressure
control at different tail tensions.
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Figure 4: Predicted vine robot trajectories for 200 seconds under proportional pressure
control at different magnitudes of pressure perturbation.
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Figure 5: Predicted vine robot trajectories for 200 seconds under on-off pressure control at
different tail tensions.
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4 Discussion

The simulation results confirm the robot’s convergence to the desired position under the

action of the controller: starting from z = 0, the robot grows until reaching z = 51 and

then continuously switches between growth and retraction while staying in the desired range

of positions. A symmetric response is seen if the simulation is started at z = 100. Figure

3 highlights the increase in switching frequency caused by increasing the tail tension. The

dependence of (8) on tail tension predicts this behavior, as higher tail tensions increase

the magnitude of the positional derivative. Additionally, this shortening of the retraction

intervals results in a higher steady-state pressure.

Figure 4 illustrates the robot’s robustness to small pressure perturbations. With ρ = 0.75,

almost no visible disturbance is made to the robot’s position and ρ = 1.5 causes a modest

variability in the switching periods. However, ρ = 5 is a large enough disturbance to negate

the robustness under small perturbations that is guaranteed by well-posedness. Despite

leaving the attractor under sudden pressure variation, the robot returns to the desired range

of positions. This suggests that the controller maintains the global recurrence of the attractor

- a weakened form of asymptotic stability due to the absence of forward invariance, but a

desirable property nonetheless - even in presence of larger pressure perturbations. Presence

of leaks that may vanish and re-appear periodically during growth and retraction is a major

concern in control of vine robots; the results of this simulation study indicate the robot’s

resilience to such operating conditions. Lastly, Figure 5 illustrates the similarities between

the performance of the on-off controller and the proportional controller. Note the widened

band of steady state pressures in Figure 5 due to the simplified pressure control law.

5 Conclusion

We presented a simplified model of the dynamics of an apical extension robot, or vine

robot, by treating it as a hybrid dynamical system. A switching control scheme was in-

troduced to account for the limitations in sensing and actuation for large-diameter vine

robots and a brief stability analysis of the controller was presented using the hybrid dy-

namics nomenclature. Lastly, simulation studies corroborated the analytical predictions and

highlighted the robustness of the system to pressure perturbations.

This model can be further improving by representing the control loop as a hybrid sample-

and-hold system. Additionally, more complex paths and tasks with time-varying attractors

need to be examined to make this analysis more directly applicable to the tasks commonly

performed by vine robots. However, the foregoing discussions confirm that the non-trivial

switching dynamics of vine robots makes this modeling framework valuable for developing

higher-level controllers and motion planners.
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6 Appendix A: Hybrid Equation Toolbox Class

classdef vineRobot_LimitedK < HybridSystem

%Modeling apical extension robot as a hybrid system.

%Define variable properties that can be modified.

properties

k = 0.1; %Constant representing linear friction [N/m^3]

c = 0.1; %Constant representing misc. friction interactions [N/m^2]

t = 15; %Constant representing tension on the robot tail [N/m^2]

L = 100; %Maximum length of the robot [m]

zGoal = 50; %Desired attractor z-position [m]

delta = 1; %Hysterisis band about the goal [m]

kP = 0.5; %Proportional control constant [-]

pMax = 20; %Maximum pressure accesible [kPa]

pMin = 10; %Minimum pressure accesible [kPa]

n = 1.1; %Empirical constant

end

%Define constant properties

properties(SetAccess = immutable)

zIndex = 1; %The index of position in the state vector

pIndex = 2; %The index of pressure in the state vector

qIndex = 3; %The index of operating mode in the state vector

end

methods

function this = vineRobot_LimitedK()

%Constructor for vineRobot class

stateDim = 3; %Pass the number of state vector dimensions

this = this@HybridSystem(stateDim);

end

function xdot = flowMap(this,x)

z = x(this.zIndex); %Extract position

p = x(this.pIndex); %Extract pressure
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q = x(this.qIndex); %Extract mode

if q == 1

%Impose maximum allowed pressure

if p >= this.pMax && this.kP*(this.zGoal - z) >= 0

if 0.5*p - this.k*z - this.c>0 %No retraction in growth

xdot = [(0.5.*p - this.k.*z - this.c).^this.n;...

0;...

0]; %Define flow map in growth mode

else

xdot = [0;0;0];

end

%Impose minimum allowed pressure

elseif p <= this.pMin && this.kP*(this.zGoal - z) <= 0

if 0.5*p - this.k*z - this.c>0 %No retraction in growth

xdot = [(0.5.*p - this.k.*z - this.c).^this.n;...

0;...

0]; %Define flow map in growth mode

else

xdot = [0;0;0];

end

else

if 0.5*p - this.k*z - this.c>0 %No retraction in growth

xdot = [(0.5.*p - this.k.*z - this.c).^this.n;...

this.kP.*(this.zGoal - z);...

0]; %Define flow map in growth mode

else

xdot = [0;this.kP.*(this.zGoal - z);0];

end

end

else

%Impose maximum allowed pressure

if p >= this.pMax && this.kP*(this.zGoal - z) >= 0

if 0.5*p - this.t + this.c + this.k*z < 0

%No growth in retraction

xdot = [(0.5.*p - this.t + this.c + this.k.*z)

.^this.n;...
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0;...

0]; %Define flow map in retraction mode

else

xdot = [0;0;0];

end

%Impose minimum allowed pressure

elseif p<= this.pMin && this.kP*(this.zGoal - z) <= 0

if 0.5*p - this.t + this.c + this.k*z < 0

%No growth in retraction

xdot = [(0.5.*p - this.t + this.c +

this.k.*z)

.^this.n;...

0;...

0]; %Define flow map in retraction mode

else

xdot = [0;0;0];

end

else

if 0.5*p - this.t + this.c + this.k*z < 0

%No growth in retraction

xdot = [(0.5.*p - this.t + this.c + this.k.*z)

.^this.n;...

this.kP.*(this.zGoal - z);...

0]; %Define flow map in retraction mode

else

xdot = [0;this.kP.*(this.zGoal - z);0];

end

end

end

end

function xplus = jumpMap(this,x)

z = x(this.zIndex); %Extract position

p = x(this.pIndex); %Extract pressure

q = x(this.qIndex); %Extract mode

xplus = [z;p;3-q]; %Toggle mode using simple switching rule
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end

function C = flowSetIndicator(this,x)

z = x(this.zIndex); %Extract position

q = x(this.qIndex); %Extract mode

%Choose flow-set about the goal point according to mode

if ( (z <= (this.zGoal + this.delta) ) && (q == 1) ||...

(z >= (this.zGoal - this.delta) ) && (q == 2))

C = 1;

else

C = 0;

end

end

function D = jumpSetIndicator(this,x)

z = x(this.zIndex); %Extract position

q = x(this.qIndex); %Extract mode

%Choose jump-set about the goal point

if ( (z >= (this.zGoal + this.delta) ) && (q == 1) ||...

(z <= (this.zGoal - this.delta) ) && (q == 2))

D = 1;

else

D = 0;

end

end

end

end
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7 Appendx B: MATLAB Script

%Run an instance of the vine robot hybrid system class

%Re-define variables

k = 0.1; %Constant representing linear friction [N/m^3]

c = 0.1; %Constant representing misc. friction interactions [N/m^2]

t = 15; %Constant representing tension on the robot tail [N/m^2]

L = 100; %Maximum length of the robot [m]

zGoal = 50; %Desired attractor z-position [m]

delta = 1; %Hysterisis band about the goal [m]

kP = 0.5; %Proportional control constant [-]

pMax = 20; %Maximum pressure accesible [kPa]

pMin = 10; %Minimum pressure accesible [kPa]

n = 1.1; %Empirical constant

%Create a vineRobot object

sys = vineRobot_LimitedK();

%Check that C and D are correct

xGrowthC = [10; 0; 1]; %C in growth

sys.assertInC(xGrowthC);

sys.assertNotInD(xGrowthC);

xRetractionC = [90; 0; 2]; %C in retraction

sys.assertInC(xRetractionC);

sys.assertNotInD(xRetractionC);

xGrowthD = [90; 0; 1]; %D in growth

sys.assertNotInC(xGrowthD);

sys.assertInD(xGrowthD);

xRetractionD = [10; 0; 2]; %D in retraction

sys.assertNotInC(xRetractionD);

sys.assertInD(xRetractionD);
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%Compute a solution

%Initial condition

x0 = [0, 15, 1];

%Time spans

tspan = [0, 200];

jspan = [0, 200];

%Specify solver options

config = HybridSolverConfig(’AbsTol’, 1e-3, ’RelTol’, 1e-7);

%Compute solution

sol = sys.solve(x0, tspan, jspan, config);

%Plot the solutions

figure(1)

clf

hpb = HybridPlotBuilder();

hpb.title(’Vine Robot Trajectory With Proportional Controller’)...

.subplots(’on’)...

.plotFlows(sol)
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