DO not
write here! { - 4----_____.

! Name: \/. |, | S
T '

Perm Number: 1

: iy | ME179P W21

Programming Project #1

e Usec a DARK pen or peucil, and write INSIDE the answer boxes provided.
e Write your name and perm number CLEARLY at the top of EVERY page, inside the boxes provided.

e Use the appropriate tools for submitting your code.

Exercise 1.8: The Bugl algorithm

E1.8(i) Sketch a flowchart of the BugBase algorithm

Answer:

e

|
l

ppl

ME179P W21

E1.8(ii)

Answer

Name: '/ 1\

Perm Number:

E1.8(iv) plot 1

Answer:

L[

DO not
write here

® Startpoint
+ Goal point (Bugl)
— Bugl path

Bun Time:
Total Path Length:

0.0 05 10 15

30 35

0.012964963912963867

19 120 158

15.359293422248788

VO not
write here! —— - -

Name: /. 1.1 ¢
T

Perm Number:

ppl

e ME179P W21

E1.8(iv) plot 2

[Answer:

® Start point Run Time: 1.1155030727386475
Goal point (Bug1)

oot Total Path Length: 29.11804622370155

°
-
~
w
-
o

—— Bug 1 Distance vs Time

o
g
B
8
o}
g
N
3
8
~
]
g
8
8

1/27/22, 4:15 PM programming_assignment1.py

VLOoONAOATULANWNR

ARARNAMAANWLWWWLWWLWWWWWWWNNNMNNNMNMNNMNNNMNNRRRRRRRRRR
ARAWNRODLVLONAAUVANUWNROILVLONAANTUVVANWNRIIVONAATULANWNROO

45
46
points
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

#

H* H H R

HHHHH

HHEHHHHEHFHHH

#

Copyright 2021 Francesco Seccamonte

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

Template file for the assignment.

Original author: Patrick Therrien, 2015
Refactor: Francesco Seccamonte, 2021

YOU MUST USE THIS FILE AND THE API HEREIN.
DO NOT MODIFY HOW FUNCTIONS AND METHODS ARE DEFINED,
SIMPLY FILL WHERE TODOs ARE.

YOU NEED TO UPLOAD THIS FILE AS PART OF YOUR SUBMISSION

Place your imports here as needed

import math

#
#

Hint: the exercise asks you to give some kind of error
in case of wrong inputs: you should do so by raising an Exception.

def computeLineThroughTwoPoints(pl, p2):

non

:param pl: a point in 2D specified as a numpy array

:param p2: a point in 2D specified as a numpy array

:return: a tuple (a,b,c) containing the coefficients of the line ax+ by = c
passing through pl and p2

Write your code here
x1 = pl[@] # Extract the coordinates from the array

yl = p1[1]
x2 = p2[0]
y2 = p2[1]

distance = math.sqrt((abs(x2-x1))**2 + (abs(y2-yl))**2) # Calculate the distance between two
tolerance = 10**-8 # Tolerance for detecting coincident points

if distance<tolerance: # Exception: Points pl and p2 cannot be the same
raise Exception("Points cannot be coincident")

if abs(yl-y2)<tolerance: # Exception: Equation for horizontal line

a==o
b=1
c = -yl
elif abs(x1-x2)<tolerance: # Exception: Equation for vertical line
b=20
a=1
c = -x1
else:
a = (yl - y2)/distance # Use formulas to calculate coefficients
b = (x2 - x1)/distance
c = (x1*y2 - x2*yl)/distance

file:///C:/Users/vedad/AppData/Roaming/Thonny/temp/thonny_txglodjt.html

12

1/27/22, 4:15 PM programming_assignment1.py

64
65 return a, b, c;
66
67
68 | def computeDistancePointTolLine(q, pl, p2):
69 e
70 :param q: the test point as a numpy array
71 :param pl: the first point defining the line
72 :param p2: the second point defining the line
73 :return: the distance from the test point q to the line defined by pl and p2
74 e
75
76 # Write your code here
77 a,b,c = computeLineThroughTwoPoints(pl, p2); # Use the line defining function to get
coefficients
78 x3 = q[@] # Extract coordinates of the third point
79 y3 = q[1]
80 d = abs(a*x3 + b*y3 + c) # Use orthogonal projection formula to find distance
81
82 return d;
83
84
85 | def computeDistancePointToSegment(q, pl, p2):
86 nn
87 :param q: the test point as a numpy array
88 :param pl: the first endpoint of the line segment
89 :param p2: the second endpoint of the line segment
90 :return: the distance d from the test point g to the line segment
91 with endpoints pl and p2
92 w, with w=0 if the segment point closest to g is strictly
93 inside the segment, w=1 if the closest point is pl1l, and
94 w= 2 if the closest point is p2.
95 e
96
97 # Write your code here
98 x1 = p1l[@] # Extract the coordinates from all three points
99 yl = p1[1]
100 x2 = p2[0]
101 y2 = p2[1]
102 x3 = q[9]
103 y3 = q[1]
104 do = computeDistancePointToLine(q, pl, p2) # Use the distance-finding function to find the
distance between g and the line corresponding to the segment
105 dl = math.sqrt((abs(x3-x1))**2 + (abs(y3-y1))**2) # Calculate distance between g and pl
106 d2 = math.sqrt((abs(x3-x2))**2 + (abs(y3-y2))**2) # Calculate distance between g and p2
107 ol = math.sqrt(abs(d2**2-de**2)) # Project the above distances onto the line
108 02 = math.sqrt(abs(d1**2-do**2))
109 1 = math.sgrt((abs(x2-x1)**2+abs(y2-y1)**2)) # Find the length of the segment
110 if 01>=1 or o02>=1: # If the projected distances are greater than segment length, the orthogonal
projection does not fall onto the segment
111 if di<d2: # Pick the closest of points pl and p2 as the distance
112 w=1
113 d =d1
114 else:
115 w =2
116 d = d2
117 else:
118 w = @ # Otherwise use orthogonal projection as the distance
119 d = do
120
121 return d, w;
122

file:///C:/Users/vedad/AppData/Roaming/Thonny/temp/thonny_txglodjt.html 2/2

1/27/22, 4:16 PM programming_assignment2.py

1 | # Copyright 2021 Francesco Seccamonte

2

3 | # Licensed under the Apache License, Version 2.0 (the "License");

4 | # you may not use this file except in compliance with the License.

5 | # You may obtain a copy of the License at

6

7 | # http://www.apache.org/licenses/LICENSE-2.0

8

9 | # Unless required by applicable law or agreed to in writing, software
10 | # distributed under the License is distributed on an "AS IS"™ BASIS,
11 | # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 | # See the License for the specific language governing permissions and
13 | # limitations under the License.

14

15 | # Template file for the assignment.

16 | #

17 | #

18 | # Author: Francesco Seccamonte, 2021

19 | #
20 | # YOU MUST USE THIS FILE AND THE API HEREIN.
21 | # DO NOT MODIFY HOW FUNCTIONS AND METHODS ARE DEFINED,
22 | # SIMPLY FILL WHERE TODOs ARE.
23 | #
24 | # YOU NEED TO UPLOAD THIS FILE AS PART OF YOUR SUBMISSION
25
26
27 | # Place your imports here as needed
28 | import numpy as np
29 | import math
30 | from programming_assignmentl import *
31
32 | # Hint: the exercise asks you to give some kind of error
33 | # in case of wrong inputs: you should do so by raising an Exception.
34
35 | # Hint n.2: you may want to reuse the functions you wrote for
36 | # programming assignment 1. You can import them by doing:
37 | # from programming_assignmentl import *
38 | # Remember to include that file as part of your submission!
39
40 | def inpolygon(q, P):
41 n
42 :param q: a point in 2D specified as a numpy array
43 :param P: a polygon with n vertices specified as an nx2 numpy array
44 :return: 1 if the point gq is inside the polygon P, © else.
45 e
46
47 from matplotlib import path
48
49 p = path.Path(P);

50 return p.contains_point(q);

51

52 | def computeDistancePointToPolygon(q, P):

53 e

54 :param q: a point in 2D specified as a numpy array

55 :param P: a polygon with n vertices specified as an nx2 numpy array
56 :return: a tuple (d,v,idx) containing the distance from the point to
57 the polygon, whether the distance is wrt a vertex (v=1) or not,
58 the index idx within the polygonal list of

59 either the vertex or segment which is closest to q.
60 The first segment is considered to be the one

61 between the first and second vertices.

62 n

63

64 # Please note: terms vertex and node are used interchangeably

file:///C:/Users/vedad/AppData/Roaming/Thonny/temp/thonny_khfzim_a.html 1/3

1/27/22, 4:16 PM programming_assignment2.py

65 # It is assumed that all points are labelled in CCW convention, and that the
66 # vertices are alligned in a CCW fashion within the input arrays.
67
68
69 booll = inpolygon(q,P) # Define the boolean corresponding to point being in the polygon
70 if booll == 1: # Raise an exception if the point is in the polygon
71 return 0,0,0
72 size = len(P) # Obtain the size of the array, or the number of nodes
73 for i in range(size): # Loop through the nodes and form segments
74 if i == size-1: # For the n-th node, the segment must connect to @-th node
75 pl = P[i]
76 p2 = P[@]
77 else: # For all other node, the segment connects the i-th and the i+1-th nodes
78 pl = P[i]
79 p2 = P[i+1]
80 dT,wT = computeDistancePointToSegment(q,pl,p2) # Use previously defined function to find
distance to segment
81 | if 1 == @: # For the first segment, store the distance to segment as the distance to the
polygon
82 | if wT == 0: # Depending on wheter the distance is to a vertex or to the segment, index
and assign v
83 d =dT
84 w = WT
85 v =0
86 idx = np.array([0,1])
87 elif wlT == 1:
88 d = dT
89 w = WT
90 v=1
91 idx = @
92 else:
93 d = dT
94 w = WT
95 v=1
96 idx = 1
97 else: # For all other segments:
98 if d>=dT: # Write the distance to segment as the distance to the polygon if the
distance to segment is
99 # smaller than the previously stored distance to polygon
100 if wT ==
101 d = dT
102 w = WT
163 v =0
104 if i == size-1: # For the n-th node, the index must refer to the ©-th node as
the second segment-defining node
105 idx = np.array([i,0])
106 else:
107 idx = np.array([i,i+1])
108 elif wT == 1: # Since each vertex is encountered twice, only the second encounter
is stored
109 d =dT
110 w = wT
111 v=1
112 idx = 1
113
114 return d, v, idx;
115
116
117 | def computeTangentVectorToPolygon(q, P):
118 e
119 :param q: a point in 2D specified as a numpy array
120 :param P: a polygon with n vertices specified as an nx2 numpy array
121 :return: the two-dimensional unit vector t (numpy array) tangent
122 to the polygon P for a robot at q.
123 ne

file:///C:/Users/vedad/AppData/Roaming/Thonny/temp/thonny_khfzim_a.html 2/3

1/27/22, 4:16 PM programming_assignment2.py

124 tolerance = 10**-8

125 d,v,idx = computeDistancePointToPolygon(q,P) # Use the compute distance to polygon function to

126 # find the distance and whether the closest point is a vertex or on a segment

127

128 if v == 0: # If the closest point lies on the segment:

129 rl = idx[@] # Use the index to find the segment endpoints

130 r2 = idx[1]

131 pl = P[rl] # Extract the x and y coordinates of the endpoints

132 p2 = P[r2]

133 x1 = p1[0]

134 yl = p1[1]

135 x2 = p2[0]

136 y2 = p2[1]

137 x3 = q[0@] # Extract coordinates of q

138 y3 = q[1]

139

140 # Find the point on the segment that is closes to q:

141 if abs(x2-x1)<tolerance: # For the case where the line segment is vertical

142 X4 = x2

143 y4 = y3

144 elif abs(y2-yl)<tolerance: # For the case where the line segment is horizontal

145 y4 = y2

146 X4 = X3

147 else: # For all other line segments

148 ml = (y2-y1)/(x2-x1)

149 m2 = -1/ml

150 bl = y2 - ml*x2

151 b2 = y3-m2*x3 # Find the equation of the perpendicular line between the point and the
segment

152 x4 = (b2-bl)/(ml-m2) # Find the point on the segment closest to the q

153 y4 = bl + ml*x4

154

155 vl = (x4 - x3)/d # Find the unit vector from q to the midpoint

156 v2 = (y4 - y3)/d

157 ul = v2 # Use a 90-degree rotation transformation to get the unit tangent vector

158 u2 = -vl

159

160 t = np.array([ul,u2]) # Output the unit tangent vector

161

162 else: # If the closest point is a vertex:

163 pl = P[idx] # Extract the vertext coordinates using the index

164 x1 = p1[0]

165 yl = p1[1]

166 x2 = q[@] # Extract coordinates of q

167 y2 = q[1]

168

169 vl = (x1 - x2)/d # Find the unit vector from g to the vertex

176 v2 = (yl1 - y2)/d

171 ul = v2 # 90-degree Use a rotation transformation fo get the unit tangent vector

172 u2 = -vl

173

174 t = np.array([ul,u2]) # Output the unit tangent vector

175

176 return t;

177

file:///C:/Users/vedad/AppData/Roaming/Thonny/temp/thonny_khfzim_a.html 313

1/27/22, 4:16 PM programming_project1.py

#

H H R

VoONAMNUVNNWNR
+

NNMNNNMNMNNMNMNRRBRRRRRRRRR
NAUVNWNROILVONATULDNWNROD
HOoHH H H HHHHH H H HFHH

#

A QAUULLULULLULULLULULULUUDNDNDMNMNANDNMNDAMARNAMNMNANWLWWLWLWLWWWLWWWWWNN
WNROLVONAATUVUAWNROIVLOONAAUVAWNROILVLONAAUNWNRO L ®
H oH H H H HHHHF

(o)}
N

Copyright 2021 Francesco Seccamonte

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

Template file for programming project 1.

Author: Francesco Seccamonte, 2021

YOU MUST USE THIS FILE AND THE API HEREIN.

DO NOT MODIFY HOW FUNCTIONS AND METHODS ARE DEFINED,

SIMPLY FILL WHERE TODOs ARE.

YOU NEED TO UPLOAD THIS FILE AS PART OF YOUR SUBMISSION

Place your imports here as needed

import numpy as np

import math

from programming_assignmentl import *
from programming_assignment2 import *

Hint: you may want to reuse the functions you wrote for
programming assignments 1 and 2. You can import them by doing:
from programming assignmentl import *

from programming_assignment2 import *

Remember to include that file as part of your submission!

Hint 2: it is strongly recommended to insert the functionalities
needed in separate auxiliary functions, to improve debugging

and readability, and to embrace the extremely useful DRY
paradigm (=Don't Repeat Yourself)

def BugBase(start,goal,obstaclelList,stepsize):

Implementation of the BugBase algorithm.

:param start: a point in 2D specified as a numpy array
:param goal: a point in 2D specified as a numpy array
:param obstaclelList: a list containing all the obstacles

(represented by polygons) in the environment.

NOTE: our convention is that a polygon is
represented by a list of vertices in
counterclockwise order
:param stepsize: a positive real number
:return: a tuple (path, polygon index, success): path is a
list containing the 1 2D points
that make up the path.
polygon index is the index in the obstaclelist
corresponding to the polygon hit in case of returning a
partial path (-1 if start-goal path returned).
success is a boolean indicating whether the algorithm
reached the goal or not.

file:///C:/Users/vedad/AppData/Roaming/Thonny/temp/thonny_3fva7nm4.html

1/4

1/27/22, 4:16 PM programming_project1.py

65 tolerance = 10**-8 # Define tolerance for detecting a point
66 x1 = start[@] # Set start point coordinates
67 yl = start[1]
68 path = [[x1,y1]] # Begin the path list using start coordinates
69 x2 = goal[@] # Set goal point coordinates
70 y2 = goal[1]
71 norm = ((x2 - x1)**2 + (y2 - yl)**2)**(1/2) # Calculate the distance between start and end
points
72 1 = len(obstaclelList) # Obtain the number of polygons in the workspace
73
74 while norm > stepsize: # While the goal point is not reached:
75 dx = (x2 - x1)*(stepsize)/(norm) # Find the tangent vector of length stepsize that points
towards the goal
76 dy = (y2 - yl)*(stepsize)/(norm)
77 cxl = x1 + dx # Set the next step's coordinates as candidate
78 cyl = y1 + dy
79 g = [cx1 , cyl]
86
81 for n in range(l): # For all of the polygons in the workspace:
82 P = obstaclelList[n]
83 d,v,idx = computeDistancePointToPolygon(q, P) # Obtain distance between candidate point
and the polygon
84
85 if d < tolerance: # If candidate point hits a polygon
86 idx = n
87 success = @
88 return path, idx, success # Terminate the function and return path, failure
89
90 x1 = cx1 # If candidate point does not hit a polygon, move to it
91 yl = cyl
92 path.append(q) # Append the path list with the new position
93 norm = ((x2 - x1)**2 + (y2 - yl)**2)**¥(1/2)
94
95 path.append(goal) # Append the path list with the goal
96 idx = -1
97 success = 1 # Return success
98
99 return path, idx, success;
100
101
102 | def computeBugl(start,goal,obstaclelList,stepsize):
103 """Implementation of the Bugl algorithm.
104
105 :param start: a point in 2D specified as a numpy array
106 tparam goal: a point in 2D specified as a numpy array
107 :param obstaclelList: a list containing all the obstacles
108 (represented by polygons) in the environment.
109 # NOTE: our convention is that a polygon is
110 # represented by a list of vertices in
111 # counterclockwise order
112 :param stepsize: a positive real number
113 :return: a list containing the 1 2D points
114 that make up the path.
115 e
116
117 tolerance = 10**-8 # Define tolerance for detecting a point
118 x1 = start[@] # Set start point coordinates
119 yl = start[1]
120 path = [[x1,y1]] # Begin the path list using start coordinates
121 x2 = goal[@] # Set goal point coordinates
122 y2 = goal[1]
123 norm = ((x2 - x1)**2 + (y2 - yl)**2)**(1/2) # Calculate the distance between start and end
points
124 distancelist = [norm]
125 1 = len(obstaclelList) # Obtain the number of polygons in the workspace

file:///C:/Users/vedad/AppData/Roaming/Thonny/temp/thonny_3fva7nm4.html 2/4

1/127/22, 4:16 PM
126

programming_project1.py

127 while norm > stepsize: # While the goal point is not reached:

128 dx = (x2 - x1)*(stepsize)/(norm) # Find the tangent vector of length stepsize that points
towards the goal

129 dy = (y2 - yl)*(stepsize)/(norm)

130 cx1l = x1 + dx

131 cyl = y1 + dy

132 g = [cx1 , cyl] # Set the next step's coordinates as candidate

133 gb = [x1,y1]

134

135 for n in range(l): # For all of the polygons in the workspace:

136 P = obstaclelList[n]

137 d,v,idx = computeDistancePointToPolygon(q, P) # Obtain distance between candidate point

and the polygon
138
139
140

if d < stepsize: # If candidate point hits a polygon
t = computeTangentVectorToPolygon(gb,P) # Use computeTangentVectorToPolygon

function to find the tangent vector to the polygon

141
142
143
144
145
146
147
148
149
150
151
152
153
154
155

dx = stepsize*t[@] # Circumnavigate the polygon using the tangent vector

dy = stepsize*t[1]
x1 = x1 + dx
yl =yl + dy

norm = ((x2 - x1)**2 + (y2 - yl1)**2)**(1/2) # Find the distance from the goal
distancelist.append(norm)

dmin = norm

xmin = x1 # Store the first point as the current minimum distance from the goal
ymin = y1

q = [x1,y1]

xstart = x1 # Store the starting point to identify end of circumnavigation
ystart = yl

path.append(q) # Append the path list with the new step

for n in range(5): # Take five steps towards circumnavigation to ensure that the

robot is away from where it started circumnavigation

156
157
158
159
160
161
162
163
164
165

t = computeTangentVectorToPolygon(q,P)

dx = stepsize*t[Q]
dy = stepsize*t[1]
x1 = x1 + dx
yl =yl + dy

norm = ((x2 - x1)**2 + (y2 - yl)**2)**(1/2)

distancelList.append(norm)

q = [x1,y1]

path.append(q)

if norm < dmin: # If any point is closer to the goal than the previously stored

minimum distance, update the minimum distance point

166
167
168
169
170

dmin = norm
xmin x1
ymin = yl

while (abs(xstart - x1)**2 + abs(ystart - y1l)**2) > 0.15: # Continue

circumnavigation until the point of initial collision is reached

171 | # An arbitrary tolerance is imposed to ensure that the starting point is
detected

172 print('in')

173 t = computeTangentVectorToPolygon(q,P)

174 dx = stepsize*t[0]

175 dy = stepsize*t[1]

176 x1 = x1 + dx

177 yl = y1l + dy

178 norm = ((x2 - x1)**2 + (y2 - yl)**2)**(1/2)

179 distancelist.append(norm)

180 q = [x1,y1]

181 path.append(q)

182 if norm < dmin: # Continue updating the point of minimum distance while
circumnavigating

file:///C:/Users/vedad/AppData/Roaming/Thonny/temp/thonny_3fva7nm4.html 3/4

1/127/22, 4:16 PM

programming_project1.py

183 dmin = norm

184 xmin = x1

185 ymin = yl

186

187 while (abs(xmin - x1)**2 + abs(ymin - y1)**2) > @.25: # Circumnavigate the polygon
until the point of minimum distacne is reached

188 | # An arbitrary tolerance is imposed to ensure that the point of minimum
distance is detected

189 print('in here")

190 t = computeTangentVectorToPolygon(q,P)

191 dx = stepsize*t[0]

192 dy = stepsize*t[1]

193 x1 = x1 + dx

194 yl =yl + dy

195 cxl = x1

196 cyl =yl

197 g = [x1,y1]

198 path.append(q)

199 norm = ((x2 - x1)**2 + (y2 - yl)**2)Y**(1/2)

200 distancelList.append(norm)

201 # Break out of the collision conditional when circumnavigation is successfully
completed

202

203 x1 = cx1 # If candidate point does not hit a polygon, move to it

204 yl = cyl

205 path.append(q) # Append the path list with the new position

206 norm = ((x2 - x1)**2 + (y2 - yl)**2)**(1/2)

207 distancelList.append(norm)

208

209 path.append(goal) # Append the path list with the goal

210

211 return path, distancelist;

file:///C:/Users/vedad/AppData/Roaming/Thonny/temp/thonny_3fva7nm4.html

4/4

1/27/22, 4:19 PM precheck_display.py

VLOoONAOATULANWNR

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

Copyright 2021 Francesco Seccamonte

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

H H R

H*

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software

distributed under the License is distributed on an "AS IS" BASIS,

WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and

limitations under the License.

Programming project 1 - Check the functions run

from programming projectl import *
import numpy as np

import matplotlib.pyplot as plt
import math

import time

from programming_assignmentl import *
from programming_assignment2 import *

if __name__ == '__main__ ':

start = np.array([0.0, 0.0]);
goal = np.array([5.0, 3.9]);
stepsize = 0.1;

NOTE: our convention is that a polygon is
represented by a list of vertices in
counterclockwise order
P = np.array([[1, 2], # Obstacle 1
[1, e],
[3, @1D);

Q = np.array([[2, 3], # Obstacle 2
[4, 1],
[5, 211);

obstaclelList = [P,Q]; # List of obstacles
obstaclesList_plot = [P.tolist(),Q.tolist()];

startTime = time.time() # Calculate run time using time module

path, distancelList = computeBugl(start, goal, obstaclelList, stepsize);
endTime = time.time()

length = len(path) # Obtain length of path

d=29
for 1 in range(length): # Move accross each step of the path
if 1 1= o:

step = path[1]
laststep = path[1l-1]

d =d+ ((step[0]-laststep[0])**2 + (step[l]-laststep[1])**2)**(1/2) # Update total

path distance

55
56
57
58
59
60
61
62
63

print('Run Time: ', endTime - startTime) # Print run time
print('Total Path Length: ', d) # Print distance of path

PLOTTING #H##H###
plt.close('all");

plt.plot(start[0],start[1], '0', label='Start point');
plt.plot(goal[@],goal[1l], '+', label='Goal point (Bugl)');

file:///C:/Users/vedad/AppData/Roaming/Thonny/temp/thonny_oner_hkk.html

12

1/27/22, 4:19 PM precheck_display.py

64

65 X,Y=map(list,zip(*path));

66 plt.plot(X,Y, label='Bugl path');

67

68 for i in range(len(obstaclesList_plot)):

69 obstaclesList_plot[i].append(obstaclesList_plot[i][@]);
70 X,Y=map(list,zip(*obstaclesList_plot[i]));
71 plt.plot(X,Y, 'y');

72

73 plt.legend();

74 plt.show();

75

76 Y = distancelList; # Plot distance vs time

77 X = list(range(9, len(Y)))

78 plt.plot(X,Y, label='Bug 1 Distance vs Time');
79

80 plt.legend();

81 plt.show();

82

file:///C:/Users/vedad/AppData/Roaming/Thonny/temp/thonny_oner_hkk.html 2/2

