Implementation of Control Systems to Sustain Autonomous Robot Motion

Tony Choi Mariana Sanchez Edgar Gonzalez Vedad Bassari

Mentor: Sharad Shankar

PI: Dr. Joao Pedro Hespanha

Control systems are widely used in daily life

Principles of control can be applied to robotics

Desired robot motion is achieved using control systems

The pursuer and evader behaviors are enhanced

PID control is utilized to obtain desired outcomes

Efficient pursuit involves a combination of speed and agility

The resulting patterns of motion are monitored

Success is maximized by increasing velocity and agility

Pursuer success: 80%

High velocity and low turning radius

Pursuer success: 66.6%

Low velocity and low turning Radius

Pursuer success: 50%

High velocity and high turning radius

Pursuer success: 33.3%

Low velocity and high turning radius

Successful control balances aggression and robustness

Acknowledgements

Thank You!

Mentor: Sharad Shankar PI: Joao Pedro Hespanha

